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Introduction

Phases of QCD Matter

I Hadronic phase :
Quarks and gluons are bound into hadrons. We can observe it
experimentally.

I QGP phase :
Quarks and gluons are free in the medium. Only indirect
observation possible.
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Introduction
Magnetic field

I Noncentral heavy-ion collisions should
produce magnetic field.

I The magnetic field is directed out of the
collision plane.

I The presence of a conducting medium
with substantially delays the decay of
By. [Kharzeev PRC 89 054905, Tuchin PRC

93 014905]

LHC: eB ≈ 15 m2
π RHIC: eB ≈ 5 m2

π

Strong magnetic field in other physical systems:

Neutron star: eB ≈ 10−7 m2
π Magnetar: eB ≈ 10−6-10−3 m2

π

Conversion unit : m
2
π ≈ 0.02 GeV

2
and 1 GeV

2 ≈ 10
15

Tesla
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Introduction

Life is tough with QCD!!

� pQCD

• Need a small coupling constant, works at high energy / high T, µ.
• Not justified in regions close to the phase boundary and below.

� LQCD

• Non-perturbative study.
• Sign problem restricts the use at high chemical potential.

� Effective models

• QCD interactions are replaced by effective interactions.
• Works only in a special domain of energy.
• Allows finite chemical potential studies.
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Introduction
NJL Model

The Lagrangian of 2-flavour Nambu–Jona-Lasinio model

L = ψ̄(x)
(
i/∂ −m

)
ψ(x) +G

{( ¯ψ(x)ψ(x)
)2

+
( ¯ψ(x)iγ5τψ(x)

)2}

� Advantages:
• It shares the global symmetries of the QCD action, most

essentially the chiral symmetry (when m = 0)

ψ −→ exp

(
−
i

2
τ · θγ5

)
ψ

• Also symmetric under ψ −→ exp
(
− i

2
τ · θ

)
ψ.

� Shortcomigs

• Since gluons are frozen, lacks confinement.
• NJL is non-renormalizable =⇒ cannot remove regularization

parameter.
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NJL model at finite temperature and density

Using mean field approximation i.e.
(
ψ̄ψ
)2 ≈ 2

〈
ψ̄ψ
〉 (
ψ̄ψ
)
−
〈
ψ̄ψ
〉2, the

thermodynamic potential become

Ω(T, µ;M) =
(M −m)2

4G
−

2NcNf

β

∫
d3~p

(2π)3

[
βE~p − ln

(
1− n+

)
− ln

(
1− n−

)]

Now the constituent quark mass M can be obtained self-consistently
from the stationarity condition i.e. ∂Ω/∂M = 0, which implies

M = m+ 4NcNfG

∫
d3~p

(2π)3

M

E~p

[
1− n+ − n−

]

Note : The medium independent momentum integral is UV divergent
and a 3-momentum cut-off parameter, Λ is introduced to regularize the
vacuum term.



7 of 18

NJL model at finite temperature and density

Using mean field approximation i.e.
(
ψ̄ψ
)2 ≈ 2

〈
ψ̄ψ
〉 (
ψ̄ψ
)
−
〈
ψ̄ψ
〉2, the

thermodynamic potential become

Ω(T, µ;M) =
(M −m)2

4G
−

2NcNf

β

∫
d3~p

(2π)3

[
βE~p − ln

(
1− n+

)
− ln

(
1− n−

)]

Now the constituent quark mass M can be obtained self-consistently
from the stationarity condition i.e. ∂Ω/∂M = 0, which implies

M = m+ 4NcNfG

∫
d3~p

(2π)3

M

E~p

[
1− n+ − n−

]

Note : The medium independent momentum integral is UV divergent
and a 3-momentum cut-off parameter, Λ is introduced to regularize the
vacuum term.



7 of 18

NJL model at finite temperature and density

Using mean field approximation i.e.
(
ψ̄ψ
)2 ≈ 2

〈
ψ̄ψ
〉 (
ψ̄ψ
)
−
〈
ψ̄ψ
〉2, the

thermodynamic potential become

Ω(T, µ;M) =
(M −m)2

4G
−

2NcNf

β

∫
d3~p

(2π)3

[
βE~p − ln

(
1− n+

)
− ln

(
1− n−

)]

Now the constituent quark mass M can be obtained self-consistently
from the stationarity condition i.e. ∂Ω/∂M = 0, which implies

M = m+ 4NcNfG

∫
d3~p

(2π)3

M

E~p

[
1− n+ − n−

]

Note : The medium independent momentum integral is UV divergent
and a 3-momentum cut-off parameter, Λ is introduced to regularize the
vacuum term.



7 of 18

NJL model at finite temperature and density

Using mean field approximation i.e.
(
ψ̄ψ
)2 ≈ 2

〈
ψ̄ψ
〉 (
ψ̄ψ
)
−
〈
ψ̄ψ
〉2, the

thermodynamic potential become

Ω(T, µ;M) =
(M −m)2

4G
−

2NcNf

β

∫
d3~p

(2π)3

[
βE~p − ln

(
1− n+

)
− ln

(
1− n−

)]

Now the constituent quark mass M can be obtained self-consistently
from the stationarity condition i.e. ∂Ω/∂M = 0, which implies

M = m+ 4NcNfG

∫
d3~p

(2π)3

M

E~p

[
1− n+ − n−

]

Note : The medium independent momentum integral is UV divergent
and a 3-momentum cut-off parameter, Λ is introduced to regularize the
vacuum term.



7 of 18

Outline

Introduction

Formalism
NJL model at finite temperature and density
Effective potential in presence of magnetic field
Inclusion of AMM of quarks

Results

Summary



8 of 18

Effective potential in presence of magnetic field

I Dispersion relation of quarks in presence of a uniform magnetic
field is given by

ωnfs(~p, n, s) = p
2
z +M

2
+ (2n+ 1− s) |qf |B

where the magnetic field along z-direction i.e. ~B = Bẑ.
I In presence of a magnetic field one should do the following

modification
Nf

∫
d3p

(2π)3
→

∑
n,f,s

|qf |B
2π

∫ ∞
−∞

dpz

2π

I Thus we get the thermodynamic potential in presence of
magnetic field as

Ω(T, µ;M) =
(M −m)2

4G
−

2Nc

β

∑
f

∑
s

∞∑
n=0

∫ ∞
−∞

dpz

2π

|qf |B
2π

[
βωnfs(~p, n, s)

− ln
(

1− n+
f

)
− ln

(
1− n−f

)]
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→

∑
n,f,s

|qf |B
2π

∫ ∞
−∞

dpz

2π

I Thus we get the thermodynamic potential in presence of
magnetic field as

Ω(T, µ;M) =
(M −m)2

4G
−

2Nc

β

∑
f

∑
s

∞∑
n=0

∫ ∞
−∞

dpz

2π

|qf |B
2π

[
βωnfs(~p, n, s)

− ln
(

1− n+
f

)
− ln

(
1− n−f

)]
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Magnetic moment

Classical

~µL =
e

2m
~L

Quantum mechanical

~µS = g
e

2m
~S

� Dirac equation predicts that any charged fermion must have a
magnetic moment.

/D
2

= D2 +
e

2
Fµνσ

µν

� correction up to order α2

g = 2 + α/π = 2.00232
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AMM of quarks

I The spin magnetic moment of a system of quarks in presence of
uniform magnetic field along ẑ

µf =
qfe

2Mf
(1 + af )

where af is the anomalous part. From here one can define a
positive quantity

If =
Mf

1 + af
=
µN
µf

qfmp

I From constituent quark model

µp =
1

3
(4µu − µd) µn =

1

3
(4µd − µu)

which implies (µp ≈ 2.79µN and µn ≈ −1.91µN )

µu ≈ 1.852 µN µd ≈ −0.972 µN
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AMM of quarks

I What if we consider finite values of AMM of quarks ?
I The immediate change is in the form of energy. Thus we can

write

Ω =
(M −m)2

4G
− 2Nc

β

∑
f

|qfB|
2π

∞∑
n=0

∑
s

∫ ∞
−∞

dpz
2π

{
βωnfs

− ln
(
1− n+

)
− ln

(
1− n−

)}
where

ωnfs =

[
p

2
z +

{(√
|qfB| (2n+ 1− s) +M2 − sκfqfB

)2}]1/2

I One can find out the constituent quark mass by minimizing the
thermodynamic potential

M = m+ 2GNc
∑
f

|qfB|
∞∑
n=0

∑
{s}

∫ ∞
−∞

dpz
4π2

M

ωnfs

(
1− sκfqfB

Mnfs

)
(
1− n+ − n−

)
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Regularization with AMM

I This regularization will be valid iff Λ2 − ~p2
⊥ ≥ 0 and ~p2

⊥ ≥ 0 as
pz, ~p⊥ are real quantities. First condition will always be there for
finite values of eB but the second condition is only due to
non-zero values of AMM of quarks.

I Putting these condition back we finally get

M = m+ 4GNc
∑
n,f,s

|qfB|
∫ Λz

0

dpz

4π2
Θ
(

Λ
2 − ~p2

⊥

)
Θ
(
~p
2
⊥

) M

ωnfs

(
1−

sκfqfB

Mnfs

)

−4GNc
∑
f

|qfB|
∞∑
n=0

∑
{s}

∫ ∞
0

dpz

4π2

M

ωnfs

(
1−

sκfqfB

Mnfs

)(
n

+
+ n
−
)

I If we take the limits κf → 0 and qfB → 0 in the above equation,
it go back to it’s vacuum expression.
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Variation of constituent quark mass (M) and ∂M/∂T with temperature T

Parameters: m0 = 5.6 MeV,Λ = 587.9 MeV, G = 2.44/Λ2.
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M vs T/µq
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Variation of χmm with temperature at different values of quark chemical potential
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Phase diagram
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Summary

I In this work, we found that the transition temperature from sym-
metry broken to restored phase increases with external magnetic
field showing the enhancement of the quark anti-quark condensate,
which can be identified as magnetic catalysis.

I The opposite behaviour is observed when AMM of quarks is taken
into consideration, indicating inverse magnetic catalysis.

I Critical behaviour of chiral susceptibility (χmm) has been exam-
ined in the vicinity of the phase transition.

I The phase diagram of hot and dense magnetized quark matter is
obtained and for finite values of eB, the CEP is found to shift
towards lower values of temperature and follows an opposite trend
when we exclude AMM of quarks.

I Interestingly at high eB for finite values of AMM, the transition
remains crossover for larger range of TC and (µq)C .
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Expression for DT

DT = 1−
GNc

π2

∑
f

|efB|
∞∑
n=0

∑
{s}

∫ Λz

0

dpz

[
sκfefBM

2

EnfsM3
nf

+
1

Enfs

(
1−

sκfefB

Mnf

)
−

M2

E3
nfs

×
(

1−
sκfefB

Mnf

)2]
−
GNc

π2

∑
f

|efB|
∞∑
n=0

∑
{s}

M2

(Λ2 +M2)1/2

(
1−

sκfefB

Mnf

)
sκfefB

ΛzMnf

+
GNc

π2

∑
f

|efB|
∞∑
n=0

∑
{s}

∫ ∞
0

dpz
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sκfefBM

2

EnfsM3
nf

+
1

Enfs

(
1−

sκfefB

Mnf

)

−
M2

E3
nfs

(
1−

sκfefB

Mnf

)2
](

n
+

+ n
−
)

−
GNc

π2

∑
f

|efB|
∞∑
n=0

∑
{s}

∫ ∞
0

dpzβ

(
M

Enfs

)2 (
1−

sκfefB

Mnf

)2 [
n

+
(1− n+

) + n
−

(1 + n
−

)
]
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M = m+ 4GNc
∑
f

|efB|
∞∑
n=0

∑
{s}

∫ Λz

0

dpz

4π2
Θ(Λ

2 − ~p2
⊥) Θ(~p

2
⊥)

M

Enfs

(
1−

sκfefB

Mnf

)

First put all the terms containing the κfefB equals to zero.

M = m+ 4GNc lim
B→0

∑
f

|efB|
∞∑
n=0

(2− δn0)

∫ √
Λ2−2n

∣∣∣efB∣∣∣
0

dpz

4π2
Θ(Λ

2 − 2n |efB|)
M√

p2
z + 2n |efB|+M2

= m+
MGNc

π2
lim
B→0

∑
f

|efB|
∞∑
n=0

(2− δn0)Θ(Λ
2 − 2n |efB|) tanh

−1

√
Λ2 − 2n |efB|

Λ2 +M2

Separating out the contribution of the LLL from the above equation( τf = 2n |efB| )

M = m+
MGNc

π2
lim
B→0

∑
f

|efB|

tanh
−1

√
Λ2

Λ2 +M2
+ 2

∞∑
τf=2|efB|

′
Θ(Λ

2 − τf ) tanh
−1

√
Λ2 − τf
Λ2 +M2


∑ ′ denotes an increment of 2efB of its index rather than 1. Now as efB → 0, we can
change the summation to an integration continuum limit∑

τf

′
→

1

2efB

∫ ∞
2efB

dτf .



18 of 18

back ups

This leads to

M = m+
MGNc

π2

∑
f

∫ ∞
0

dτfΘ(Λ
2 − τf ) tanh

−1

√
Λ2 − τf
Λ2 +M2

Note that, the presence of the step function will restrict the upper limit of the τf
integration. Performing the remaining dτf integral, we are left with

M = m+
GMNfNc

π2

[
Λ
√

Λ2 +M2 −M2
sinh

−1

(
Λ

M

)]
which is same as the vacuum term.
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NJL Lagrangian considering AMM of quarks in presence of uniform background magnetic
field

L = ψ̄(x)

(
i /D −m+

1

2
âσ
µν
Fµν

)
ψ(x) +G

{(
ψ̄(x)ψ(x)

)2
+
(
ψ̄(x)iγ5τψ(x)

)2}
Dµ = ∂µ + iQAµ; Q̂ = diag(2e/3,−e/3); â = Q̂κ̂; κ̂ = diag(κu, κd);

σµν =
i

2
[γµ, γν ]; gµν = diag (1,−1,−1,−1);

In MFA the Lagrangian becomes

L = ψ̄(x)

(
i /D −M +

1

2
âσ
µν
Fµν

)
ψ(x)−

(M −m)2

4G
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Regularization at finite eB
I Note that, the medium independent integral is still ultraviolet

divergent

Idiv =

∫ ∞
−∞

dpz
4π2

M

ωnfs

(
1− sκfqfB

Mnfs

)
I First, we note that the integrands are even functions of pz;

introducing the field dependent cut-off parameter Λz we get,

Ireg = 2

∫ Λz

0

dpz
4π2

M

ωnfs

(
1− sκfqfB

Mnfs

)
where,

Λz =
√

Λ2 − ~p2
⊥

while Λ being the usual three-momentum cut-off. The quantity
~p2
⊥ inside the square root can be identified from expression for

energy

~p2
⊥ =

(√
|qfB| (2n+ 1− s) +M2 − sκfqfB

)2

−M2

= |qfB| (2n+ 1− s) + (κfqfB)
2 − 2sMnfsκfqfB.
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qfB → 0 limit

M = m+ 4GNc
∑
f

|qfB|
∞∑
n=0

∑
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∫ Λz

0

dpz

4π2
Θ(Λ

2 − ~p2
⊥) Θ(~p

2
⊥)

M

ωnfs

(
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Mnfs

)
First put all the terms containing the κfefB equals to zero.

M = m+ 4GNc lim
B→0

∑
f

|qfB|
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n=0

(2− δn0)

∫ √
Λ2−2n

∣∣∣qfB∣∣∣
0

dpz
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∑
f
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n=0

(2− δn0) tanh
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√
Λ2 − 2n |qfB|

Λ2 +M2

with nmax =
[
Λ2/2 |qfB|

]
. Separating out the contribution of the LLL from the above

equation( τf = 2n |qfB| )

M = m+
MGNc

π2
lim
B→0

∑
f

|qfB|

tanh
−1

√
Λ2

Λ2 +M2
+ 2

Λ2∑
τf=2|qfB|

′
tanh

−1

√
Λ2 − τf
Λ2 +M2


As qfB → 0, we can change the summation to an integration continuum limit

∑
τf

′
→

1

2qfB

∫ Λ2

2qfB

dτf .



18 of 18

qfB → 0 limit

This leads to

M = m+
MGNc

π2

∑
f

∫ Λ2

0

dτf tanh
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√
Λ2 − τf
Λ2 +M2

Note that, the presence of the step function will restrict the upper limit of the τf
integration. Performing the remaining dτf integral, we are left with

M = m+
GMNfNc

π2

[
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√

Λ2 +M2 −M2
sinh
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(
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M

)]
which is same as the vacuum term.
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Constituent quark mass vs µq
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Figure: µq dependence of Constituent quark mass (M) at (a) T = 30 MeV
and (b) at T = 120 MeV for different values of eB and κ.
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