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Phases of QCD Matter

early universe
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Temperature
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» Hadronic phase :

ALICE quark-gluon plasma
-0

quark matter

crossover _—

superfluid/superconducting

e

2SC >0y
f

Zeutron siar cores

phases ?

@

Quarks and gluons are bound into hadrons. We can observe it

experimentally.
» QGP phase :

Quarks and gluons are free in the medium. Only indirect

observation possible.
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Magnetic field

» Noncentral heavy-ion collisions should
produce magnetic field.

» The magnetic field is directed out of the

Reaction ..
collision plane.

» The presence of a conducting medium
with substantially delays the decay of
By. [Kharzeev PRC 89 054905, Tuchin PRC
93 014905

X (defines ¥y)

LHC: eB~15m2 RHIC: eB=~5m?
Strong magnetic field in other physical systems:
Neutron star: eB =~ 107" m2  Magnetar: eB ~ 107%-107% m2

Conversion unit : mf‘_ ~0.02 GeV? and 1 GeV? ~ 10" Tesla
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Life is tough with QCD!!

B pQCD

e Need a small coupling constant, works at high energy / high T, p.
e Not justified in regions close to the phase boundary and below.

B LQCD

e Non-perturbative study.
e Sign problem restricts the use at high chemical potential.

B Effective models

e QCD interactions are replaced by effective interactions.
e Works only in a special domain of energy.
e Allows finite chemical potential studies.



Introduction
NJL Model



Introduction
NJL Model

The Lagrangian of 2-flavour Nambu—Jona-Lasinio model

2

£ = () (i = m) () + G { (w(2)p(@)” + (@(2)irsri()’}



Introduction
NJL Model

The Lagrangian of 2-flavour Nambu—Jona-Lasinio model

2

£ = () (i = m) () + G { (w(2)p(@)” + (@(2)irsri()’}

B Advantages:



Introduction
NJL Model

The Lagrangian of 2-flavour Nambu—Jona-Lasinio model

% =) (i~ m) w(x) + G { (@(2)0(@) + @)isTi@)’}

B Advantages:

e It shares the global symmetries of the QCD action, most
essentially the chiral symmetry (when m = 0)

% — exp (—%r : 9’Y5> ¥



Introduction
NJL Model

The Lagrangian of 2-flavour Nambu—Jona-Lasinio model

2

% =) (i~ m) w(x) + G { (@(2)0(@) + @)isTi@)’}

B Advantages:
e It shares the global symmetries of the QCD action, most
essentially the chiral symmetry (when m = 0)

% — exp (—%r : 0%) "

e Also symmetric under ¢ — exp (—%T . 0) .



Introduction
NJL Model

The Lagrangian of 2-flavour Nambu—Jona-Lasinio model

2

% =) (i~ m) w(x) + G { (@(2)0(@) + @)isTi@)’}

B Advantages:
e It shares the global symmetries of the QCD action, most

essentially the chiral symmetry (when m = 0)
§ — exp (—%r : 975) ¥

e Also symmetric under ¢ — exp (—%T . 0) .
B Shortcomigs



Introduction
NJL Model

The Lagrangian of 2-flavour Nambu—Jona-Lasinio model

2

% =) (i~ m) w(x) + G { (@(2)0(@) + @)isTi@)’}

B Advantages:

e It shares the global symmetries of the QCD action, most
essentially the chiral symmetry (when m = 0)

% — exp (—%r : 0%) "
e Also symmetric under ¢ — exp (—%T . 0) .

B Shortcomigs

e Since gluons are frozen, lacks confinement.



Introduction
NJL Model

The Lagrangian of 2-flavour Nambu—Jona-Lasinio model

% =) (i~ m) w(x) + G { (@(2)0(@) + @)isTi@)’}

B Advantages:

e It shares the global symmetries of the QCD action, most
essentially the chiral symmetry (when m = 0)

% — exp (—%r : 075) "

e Also symmetric under ¢ — exp (—%T . 0) .
B Shortcomigs

e Since gluons are frozen, lacks confinement.
e NJL is non-renormalizable = cannot remove regularization
parameter.
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NJL model at finite temperature and density

Using mean field approximation i.e. (dv)? ~ 2 (¢0) () — (D)2,
thermodynamic potential become

d>p

N (S R

Now the constituent quark mass M can be obtained self-consistently
from the stationarity condition i.e. o9/0M = 0, which implies

M —m)?2 2N.N
Q(T-,M;M):( 4Gm) " f/

3 =
M =m + 4N, NfG/ (ZW’;B ;\f_ [1-nt—n]
Note : The medium independent momentum integral is UV divergent

and a 3-momentum cut-off parameter, A is introduced to regularize the
vacuum term.
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Effective potential in presence of magnetic field

» Dispersion relation of quarks in presence of a uniform magnetic
field is given by

Wnps(Bim,8) =p2 + M? + (2n+1— ) |qs| B

where the magnetic field along z-direction i.e. B = B3.

» In presence of a magnetic field one should do the following
modification

qu\B oe dpz
(2 )3 Z
yS

» Thus we get the thermodynamic potential in presence of
magnetic field as

T, ;M) = (1\447771) 2N ZZZ/ d’: ‘qleI:ﬁwnfs(ﬁ,n,s)

s n=0

—In (17@) —In (1771;)}
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Magnetic moment

\)4 Classical Quantum mechanical

.\L» A =area

B Dirac equation predicts that any charged fermion must have a
magnetic moment.

i, =5 L s = g—8
ip = =
- 2m 1s ng

B = 7+ B




Magnetic moment

\)4 Classical Quantum mechanical

.\L» A =area

B Dirac equation predicts that any charged fermion must have a
magnetic moment.

e -

—

KL

- _ . ¢z
™ Ms—g2m5

P = D+ S0t

B correction up to order o2

g=2+a/m=2.00232
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AMM of quarks

» The spin magnetic moment of a system of quarks in presence of
uniform magnetic field along 2

np =2 (14 ay)
2M ¥
where ay is the anomalous part. From here one can define a
positive quantity
M f HUN

= — m.
L+ayr quf !

Iy =

» From constituent quark model

1 1
Hp = 3 (4,uu - ,Ud) M = 3 (4,ud - ,uu)

which implies (p, ~ 2.79uy and p, = —1.91uy)

ftu ~ 1.852 N fta ~ —0.972 un
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AMM of quarks
» What if we consider finite values of AMM of quarks ?
» The immediate change is in the form of energy. Thus we can

write
)2
0 - (M m)® 2N, Z\Qfﬂz Z/ dpz 5wnfs
—ln(l—n )—ln(l—n*)}

where
< 2

) 2 1/2
Wnfs = [pz + {<\/\q_/'B\ (2n+1—3s)+ M2 — snquB) }}

» One can find out the constituent quark mass by minimizing the

thermodynamic potential

dp, M (1_SHfoB>

M = m+2GN, ZquB|ZZ/ 472 Wy ge M s

n=0 {s}
(1—n+—n )
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Regularization with AMM

» This regularization will be valid iff A2 — 52 > 0 and p? > 0 as
p.,pL are real quantities. First condition will always be there for
finite values of eB but the second condition is only due to
non-zero values of AMM of quarks.

» Putting these condition back we finally get

o(w-a) e (®) o (1-5127)

M = —‘1-461'1\/'C E ‘(]fB'/
— m
0 47

n,f,s

o0
—IGN a1 S Y [T (1= B (0 )
f

2
=01 472 W ts

» If we take the limits Ky — 0 and ¢y B — 0 in the above equation,
it go back to it’s vacuum expression.
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Variation of constituent quark mass (M) and OM /90T with temperature T'

Parameters: mo = 5.6 MeV, A = 587.9 MeV, G = 2444/A2.
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Figure: Te-(pq)c phase diagram in NJL model for three different
conditions.
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Figure: Te-(pq)c phase diagram in NJL model for three different
conditions.

» The red, green and blue square points represent CEPs
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Summary

» In this work, we found that the transition temperature from sym-
metry broken to restored phase increases with external magnetic
field showing the enhancement of the quark anti-quark condensate,
which can be identified as magnetic catalysis.

» The opposite behaviour is observed when AMM of quarks is taken
into consideration, indicating inverse magnetic catalysis.

» Critical behaviour of chiral susceptibility (}mm) has been exam-
ined in the vicinity of the phase transition.

» The phase diagram of hot and dense magnetized quark matter is
obtained and for finite values of eB, the CEP is found to shift
towards lower values of temperature and follows an opposite trend
when we exclude AMM of quarks.

» Interestingly at high eB for finite values of AMM, the transition
remains crossover for larger range of T¢ and (iq)c-
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Expression for D
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Figure: Variation of scaled entropy density as function of temperature at
tg = 0.
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First put all the terms containing the xkyey B equals to zero.
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Separating out the contribution of the LLL from the above equation( 75 = 2n |esB| )

MGN, . A o (A2 o1 [ A=y
M=m+Té1510;|efB| tanh m+2 ; S(A — 7f) tanh m
Tf==lef

5=’ denotes an increment of 2e¢B of its index rather than 1. Now as ey B — 0, we can
change the summation to an integration continuum limit

’ 1
Z - 2€fB

f

oo

dry.
2es B



back ups

This leads to
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Note that, the presence of the step function will restrict the upper limit of the 7
integration. Performing the remaining d7y integral, we are left with
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which is same as the vacuum term.
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NJL Lagrangian considering AMM of quarks in presence of uniform background magnetic

field
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Regularization at finite eB

» Note that, the medium independent integral is still ultraviolet

divergent
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» First, we note that the integrands are even functions of p,;
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while A being the usual three-momentum cut-off. The quantity
P2 inside the square root can be identified from expression for
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This leads to
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Note that, the presence of the step function will restrict the upper limit of the 7
integration. Performing the remaining d7y integral, we are left with
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which is same as the vacuum term.



Constituent quark mass vs p,

M (MeV)
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Figure: p14 dependence of Constituent quark mass (M) at (a) T'= 30 MeV

and (b) at T'= 120 MeV for different values of eB and .
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