Thermodynamics of strongly interacting matter in background magnetic field

Nilanjan Chaudhuri

Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Kolkata 700064, India

CETHENP

November 25-27, 2019

Outline

Introduction

Formalism

NJL model at finite temperature and density Effective potential in presence of magnetic field Inclusion of AMM of quarks

Results

Summary

Outline

Introduction

Formalism

NJL model at finite temperature and density Effective potential in presence of magnetic field Inclusion of AMM of quarks

Results

Summary

Phases of **QCD** Matter

Phases of **QCD** Matter

Phases of **QCD** Matter

▶ Hadronic phase :

Quarks and gluons are bound into hadrons. We can observe it experimentally.

► QGP phase :

Quarks and gluons are free in the medium. Only indirect observation possible.

Magnetic field

Magnetic field

Magnetic field

 Noncentral heavy-ion collisions should produce magnetic field.

Magnetic field

- Noncentral heavy-ion collisions should produce magnetic field.
- The magnetic field is directed out of the collision plane.

Magnetic field

- Noncentral heavy-ion collisions should produce magnetic field.
- The magnetic field is directed out of the collision plane.
- ► The presence of a conducting medium with substantially delays the decay of B_y. [Kharzeev PRC 89 054905, Tuchin PRC 93 014905]

Magnetic field

- Noncentral heavy-ion collisions should produce magnetic field.
- The magnetic field is directed out of the collision plane.
- ► The presence of a conducting medium with substantially delays the decay of B_y. [Kharzeev PRC 89 054905, Tuchin PRC 93 014905]

LHC: $eB \approx 15 \ m_{\pi}^2$ **RHIC**: $eB \approx 5 \ m_{\pi}^2$

Magnetic field

- Noncentral heavy-ion collisions should produce magnetic field.
- The magnetic field is directed out of the collision plane.
- ► The presence of a conducting medium with substantially delays the decay of B_y. [Kharzeev PRC 89 054905, Tuchin PRC 93 014905]

LHC: $eB \approx 15 \ m_{\pi}^2$ **RHIC**: $eB \approx 5 \ m_{\pi}^2$

Strong magnetic field in other physical systems:

Magnetic field

- Noncentral heavy-ion collisions should produce magnetic field.
- The magnetic field is directed out of the collision plane.
- ► The presence of a conducting medium with substantially delays the decay of B_y. [Kharzeev PRC 89 054905, Tuchin PRC 93 014905]

LHC: $eB \approx 15 \ m_{\pi}^2$ **RHIC**: $eB \approx 5 \ m_{\pi}^2$

Strong magnetic field in other physical systems:

Neutron star: $eB \approx 10^{-7} m_{\pi}^2$

Magnetic field

- Noncentral heavy-ion collisions should produce magnetic field.
- The magnetic field is directed out of the collision plane.
- ► The presence of a conducting medium with substantially delays the decay of B_y. [Kharzeev PRC 89 054905, Tuchin PRC 93 014905]

LHC: $eB \approx 15 \ m_{\pi}^2$ **RHIC**: $eB \approx 5 \ m_{\pi}^2$

Strong magnetic field in other physical systems:

Neutron star: $eB \approx 10^{-7} m_{\pi}^2$ Magnetar: $eB \approx 10^{-6} \cdot 10^{-3} m_{\pi}^2$

Magnetic field

- Noncentral heavy-ion collisions should produce magnetic field.
- The magnetic field is directed out of the collision plane.
- ► The presence of a conducting medium with substantially delays the decay of B_y. [Kharzeev PRC 89 054905, Tuchin PRC 93 014905]

LHC: $eB \approx 15 \ m_{\pi}^2$ **RHIC**: $eB \approx 5 \ m_{\pi}^2$

Strong magnetic field in other physical systems:

Neutron star: $eB \approx 10^{-7} m_{\pi}^2$ Magnetar: $eB \approx 10^{-6} \cdot 10^{-3} m_{\pi}^2$

Conversion unit : $m_{\pi}^2 \approx 0.02 \text{ GeV}^2$ and $1 \text{ GeV}^2 \approx 10^{15}$ Tesla

Life is tough with QCD!!

Life is tough with QCD!!

Life is tough with QCD!!

• Need a small coupling constant, works at high energy / high $T,\mu.$

Life is tough with QCD!!

pQCD

- Need a small coupling constant, works at high energy / high T, μ .
- Not justified in regions close to the phase boundary and below.

Life is tough with QCD!!

pQCD

- Need a small coupling constant, works at high energy / high T, μ .
- Not justified in regions close to the phase boundary and below.

Life is tough with QCD!!

pQCD

- Need a small coupling constant, works at high energy / high T, μ .
- Not justified in regions close to the phase boundary and below.

LQCD

• Non-perturbative study.

Life is tough with QCD!!

pQCD

- Need a small coupling constant, works at high energy / high T, μ .
- Not justified in regions close to the phase boundary and below.

LQCD

- Non-perturbative study.
- Sign problem restricts the use at high chemical potential.

Life is tough with QCD!!

pQCD

- Need a small coupling constant, works at high energy / high T, μ .
- Not justified in regions close to the phase boundary and below.

LQCD

- Non-perturbative study.
- Sign problem restricts the use at high chemical potential.

Effective models

Life is tough with QCD!!

pQCD

- Need a small coupling constant, works at high energy / high $T,\mu.$
- Not justified in regions close to the phase boundary and below.

LQCD

- Non-perturbative study.
- Sign problem restricts the use at high chemical potential.

Effective models

• QCD interactions are replaced by effective interactions.

Life is tough with QCD!!

pQCD

- Need a small coupling constant, works at high energy / high $T,\mu.$
- Not justified in regions close to the phase boundary and below.

LQCD

- Non-perturbative study.
- Sign problem restricts the use at high chemical potential.

Effective models

- QCD interactions are replaced by effective interactions.
- Works only in a special domain of energy.

Life is tough with QCD!!

pQCD

- Need a small coupling constant, works at high energy / high T, μ .
- Not justified in regions close to the phase boundary and below.

LQCD

- Non-perturbative study.
- Sign problem restricts the use at high chemical potential.

Effective models

- QCD interactions are replaced by effective interactions.
- Works only in a special domain of energy.
- Allows finite chemical potential studies.

$\underset{\rm NJL \ Model}{\rm Introduction}$

NJL Model

The Lagrangian of 2-flavour ${\bf Nambu-Jona-Lasinio}\ {\rm model}$

$$\mathscr{L} = \bar{\psi}(x) \left(i \not{\partial} - m \right) \psi(x) + G \left\{ \left(\psi(\bar{x}) \psi(x) \right)^2 + \left(\psi(\bar{x}) i \gamma_5 \tau \psi(x) \right)^2 \right\}$$

NJL Model

The Lagrangian of 2-flavour ${\bf Nambu-Jona-Lasinio}\ {\rm model}$

$$\mathscr{L} = \bar{\psi}(x) \left(i \not{\partial} - m \right) \psi(x) + G \left\{ \left(\psi(\bar{x}) \psi(x) \right)^2 + \left(\psi(\bar{x}) i \gamma_5 \tau \psi(x) \right)^2 \right\}$$

Advantages:

NJL Model

The Lagrangian of 2-flavour Nambu–Jona-Lasinio model

$$\mathscr{L} = \bar{\psi}(x) \left(i \not\!\!/ \phi - m \right) \psi(x) + G \left\{ \left(\psi(\bar{x}) \psi(x) \right)^2 + \left(\psi(\bar{x}) i \gamma_5 \tau \psi(x) \right)^2 \right\}$$

Advantages:

• It shares the global symmetries of the QCD action, most essentially the chiral symmetry (when m = 0)

$$\psi \longrightarrow \exp\left(-\frac{i}{2}\tau \cdot \theta\gamma_5\right)\psi$$

NJL Model

The Lagrangian of 2-flavour Nambu–Jona-Lasinio model

$$\mathscr{L} = \bar{\psi}(x) \left(i \not\!\!/ \phi - m \right) \psi(x) + G \left\{ \left(\psi(\bar{x}) \psi(x) \right)^2 + \left(\psi(\bar{x}) i \gamma_5 \tau \psi(x) \right)^2 \right\}$$

Advantages:

• It shares the global symmetries of the QCD action, most essentially the chiral symmetry (when m = 0)

$$\psi \longrightarrow \exp\left(-\frac{i}{2}\tau \cdot \theta\gamma_5\right)\psi$$

• Also symmetric under $\psi \longrightarrow \exp\left(-\frac{i}{2}\tau \cdot \theta\right)\psi$.

NJL Model

The Lagrangian of 2-flavour Nambu–Jona-Lasinio model

$$\mathscr{L} = \bar{\psi}(x) \left(i \not\!\!/ \phi - m \right) \psi(x) + G \left\{ \left(\psi(\bar{x}) \psi(x) \right)^2 + \left(\psi(\bar{x}) i \gamma_5 \tau \psi(x) \right)^2 \right\}$$

Advantages:

• It shares the global symmetries of the QCD action, most essentially the chiral symmetry (when m = 0)

$$\psi \longrightarrow \exp\left(-\frac{i}{2}\tau \cdot \theta\gamma_5\right)\psi$$

Also symmetric under ψ → exp (-ⁱ/₂τ ⋅ θ) ψ.
Shortcomigs

NJL Model

The Lagrangian of 2-flavour Nambu–Jona-Lasinio model

$$\mathscr{L} = \bar{\psi}(x) \left(i \not\!\!/ \phi - m \right) \psi(x) + G \left\{ \left(\psi(\bar{x}) \psi(x) \right)^2 + \left(\psi(\bar{x}) i \gamma_5 \tau \psi(x) \right)^2 \right\}$$

Advantages:

• It shares the global symmetries of the QCD action, most essentially the chiral symmetry (when m = 0)

$$\psi \longrightarrow \exp\left(-\frac{i}{2}\tau \cdot \theta\gamma_5\right)\psi$$

- Also symmetric under $\psi \longrightarrow \exp\left(-\frac{i}{2}\tau \cdot \theta\right)\psi$.
- Shortcomigs
 - Since gluons are frozen, lacks confinement.

NJL Model

The Lagrangian of 2-flavour Nambu–Jona-Lasinio model

$$\mathscr{L} = \bar{\psi}(x) \left(i \not\!\!/ \phi - m \right) \psi(x) + G \left\{ \left(\psi(\bar{x}) \psi(x) \right)^2 + \left(\psi(\bar{x}) i \gamma_5 \tau \psi(x) \right)^2 \right\}$$

Advantages:

• It shares the global symmetries of the QCD action, most essentially the chiral symmetry (when m = 0)

$$\psi \longrightarrow \exp\left(-\frac{i}{2}\tau \cdot \theta\gamma_5\right)\psi$$

• Also symmetric under $\psi \longrightarrow \exp\left(-\frac{i}{2}\tau \cdot \theta\right)\psi$.

Shortcomigs

- Since gluons are frozen, lacks confinement.
- NJL is non-renormalizable \implies cannot remove regularization parameter.

Outline

Introduction

Formalism

NJL model at finite temperature and density Effective potential in presence of magnetic field Inclusion of AMM of quarks

Results

Summary

Outline

Introduction

Formalism NJL model at finite temperature and density Effective potential in presence of magnetic field Inclusion of AMM of quarks

Results

Summary

Using mean field approximation i.e. $(\bar{\psi}\psi)^2 \approx 2 \langle \bar{\psi}\psi \rangle (\bar{\psi}\psi) - \langle \bar{\psi}\psi \rangle^2$, the thermodynamic potential become

$$\Omega(T,\mu;M) = \frac{(M-m)^2}{4G} - \frac{2N_c N_f}{\beta} \int \frac{d^3 \vec{p}}{(2\pi)^3} \left[\beta E_{\vec{p}} - \ln\left(1-n^+\right) - \ln\left(1-n^-\right)\right]$$

Using mean field approximation i.e. $(\bar{\psi}\psi)^2 \approx 2 \langle \bar{\psi}\psi \rangle (\bar{\psi}\psi) - \langle \bar{\psi}\psi \rangle^2$, the thermodynamic potential become

$$\Omega(T,\mu;M) = \frac{(M-m)^2}{4G} - \frac{2N_c N_f}{\beta} \int \frac{d^3 \vec{p}}{(2\pi)^3} \left[\beta E_{\vec{p}} - \ln\left(1 - n^+\right) - \ln\left(1 - n^-\right)\right]$$

Now the constituent quark mass M can be obtained self-consistently from the stationarity condition i.e. $\partial \Omega / \partial M = 0$, which implies

$$M = m + 4N_c N_f G \int \frac{d^3 \vec{p}}{(2\pi)^3} \frac{M}{E_{\vec{p}}} \left[1 - n^+ - n^- \right]$$

Using mean field approximation i.e. $(\bar{\psi}\psi)^2 \approx 2 \langle \bar{\psi}\psi \rangle (\bar{\psi}\psi) - \langle \bar{\psi}\psi \rangle^2$, the thermodynamic potential become

$$\Omega(T,\mu;M) = \frac{(M-m)^2}{4G} - \frac{2N_c N_f}{\beta} \int \frac{d^3 \vec{p}}{(2\pi)^3} \left[\beta E_{\vec{p}} - \ln\left(1-n^+\right) - \ln\left(1-n^-\right)\right]$$

Now the constituent quark mass M can be obtained self-consistently from the stationarity condition i.e. $\partial \Omega / \partial M = 0$, which implies

$$M = m + 4N_c N_f G \int \frac{d^3 \vec{p}}{(2\pi)^3} \frac{M}{E_{\vec{p}}} \left[1 - n^+ - n^- \right]$$

Note : The medium independent momentum integral is UV divergent and a 3-momentum cut-off parameter, Λ is introduced to regularize the vacuum term.

Outline

Introduction

Formalism NJL model at finite temperature and density Effective potential in presence of magnetic field Inclusion of AMM of quarks

Results

Summary

▶ Dispersion relation of quarks in presence of a uniform magnetic field is given by

$$\omega_{nfs}(\vec{p}, n, s) = p_z^2 + M^2 + (2n + 1 - s) |q_f| B$$

where the magnetic field along z-direction i.e. $\vec{B} = B\hat{z}$.

 Dispersion relation of quarks in presence of a uniform magnetic field is given by

$$\omega_{nfs}(\vec{p}, n, s) = p_z^2 + M^2 + (2n + 1 - s) |q_f| B$$

where the magnetic field along z-direction i.e. $\vec{B} = B\hat{z}$.

▶ In presence of a magnetic field one should do the following modification

$$N_f \int \frac{d^3 p}{(2\pi)^3} \rightarrow \sum_{n,f,s} \frac{|q_f| B}{2\pi} \int_{-\infty}^{\infty} \frac{dp_z}{2\pi}$$

 Dispersion relation of quarks in presence of a uniform magnetic field is given by

$$\omega_{nfs}(\vec{p}, n, s) = p_z^2 + M^2 + (2n + 1 - s) |q_f| B$$

where the magnetic field along z-direction i.e. $\vec{B} = B\hat{z}$.

▶ In presence of a magnetic field one should do the following modification

$$N_f \int \frac{d^3 p}{(2\pi)^3} \rightarrow \sum_{n,f,s} \frac{|q_f| B}{2\pi} \int_{-\infty}^{\infty} \frac{dp_z}{2\pi}$$

▶ Thus we get the thermodynamic potential in presence of magnetic field as

$$\begin{split} \Omega(T,\mu;M) &= \frac{(M-m)^2}{4G} - \frac{2N_c}{\beta} \sum_f \sum_s \sum_{n=0}^{\infty} \int_{-\infty}^{\infty} \frac{dp_z}{2\pi} \frac{|q_f| B}{2\pi} \left[\beta \omega_{nfs}(\vec{p},n,s) - \ln\left(1-n_f^+\right) - \ln\left(1-n_f^-\right) \right] \end{split}$$

Outline

Introduction

Formalism

NJL model at finite temperature and density Effective potential in presence of magnetic field Inclusion of AMM of quarks

Results

Summary

Classical

$$\vec{\mu}_L = \frac{e}{2m}\vec{L}$$

Classical

$$\vec{\mu}_L = \frac{e}{2m}\vec{L}$$

Quantum mechanical

$$\vec{\mu}_S = g \frac{e}{2m} \vec{S}$$

■ Dirac equation predicts that any charged fermion must have a magnetic moment.

Dirac equation predicts that any charged fermion must have a magnetic moment.

$${
ot\!\!/} D^2 = D^2 + {e\over 2} F_{\mu
u} \sigma^{\mu
u}$$

Dirac equation predicts that any charged fermion must have a magnetic moment.

$$onumber D^2 = D^2 + rac{e}{2} F_{\mu
u} \sigma^{\mu
u}$$

Dirac equation predicts that any charged fermion must have a magnetic moment.

$$\not\!\!\!D^2 = D^2 + \frac{e}{2} F_{\mu\nu} \sigma^{\mu\nu}$$

correction up to order α^2

$$g = 2 + \alpha/\pi = 2.00232$$

 \blacktriangleright The spin magnetic moment of a system of quarks in presence of uniform magnetic field along \hat{z}

$$\mu_f = \frac{q_f e}{2M_f} (1 + a_f)$$

where a_f is the anomalous part.

 \blacktriangleright The spin magnetic moment of a system of quarks in presence of uniform magnetic field along \hat{z}

$$\mu_f = \frac{q_f e}{2M_f} (1 + a_f)$$

where a_f is the anomalous part. From here one can define a positive quantity

$$I_f = \frac{M_f}{1 + a_f} = \frac{\mu_N}{\mu_f} q_f m_p$$

 \blacktriangleright The spin magnetic moment of a system of quarks in presence of uniform magnetic field along \hat{z}

$$\mu_f = \frac{q_f e}{2M_f} (1 + a_f)$$

where a_f is the anomalous part. From here one can define a positive quantity

$$I_f = \frac{M_f}{1 + a_f} = \frac{\mu_N}{\mu_f} q_f m_p$$

▶ From constituent quark model

$$\mu_p = \frac{1}{3} \left(4\mu_u - \mu_d \right) \qquad \qquad \mu_n = \frac{1}{3} \left(4\mu_d - \mu_u \right)$$

 \blacktriangleright The spin magnetic moment of a system of quarks in presence of uniform magnetic field along \hat{z}

$$\mu_f = \frac{q_f e}{2M_f} (1 + a_f)$$

where a_f is the anomalous part. From here one can define a positive quantity

$$I_f = \frac{M_f}{1 + a_f} = \frac{\mu_N}{\mu_f} q_f m_p$$

▶ From constituent quark model

$$\mu_p = \frac{1}{3} \left(4\mu_u - \mu_d \right) \qquad \qquad \mu_n = \frac{1}{3} \left(4\mu_d - \mu_u \right)$$

which implies $(\mu_p \approx 2.79 \mu_N \text{ and } \mu_n \approx -1.91 \mu_N)$

 $\mu_{\mathbf{u}} pprox \mathbf{1.852} \ \mu_{\mathbf{N}}$ $\mu_{\mathbf{d}} pprox -0.972 \ \mu_{\mathbf{N}}$

▶ What if we consider finite values of AMM of quarks ?

- ▶ What if we consider finite values of AMM of quarks ?
- ▶ The immediate change is in the form of energy. Thus we can write

$$\Omega = \frac{(M-m)^2}{4G} - \frac{2N_c}{\beta} \sum_f \frac{|q_f B|}{2\pi} \sum_{n=0}^{\infty} \sum_s \int_{-\infty}^{\infty} \frac{dp_z}{2\pi} \left\{ \beta \omega_{nfs} - \ln(1-n^+) - \ln(1-n^-) \right\}$$

- ▶ What if we consider finite values of AMM of quarks ?
- ▶ The immediate change is in the form of energy. Thus we can write

$$\Omega = \frac{(M-m)^2}{4G} - \frac{2N_c}{\beta} \sum_f \frac{|q_f B|}{2\pi} \sum_{n=0}^{\infty} \sum_s \int_{-\infty}^{\infty} \frac{dp_z}{2\pi} \left\{ \beta \omega_{nfs} - \ln(1-n^+) - \ln(1-n^-) \right\}$$

where

$$\omega_{nfs} = \left[p_z^2 + \left\{ \left(\sqrt{|q_f B| (2n+1-s) + M^2} - s\kappa_f q_f B \right)^2 \right\} \right]^{1/2}$$

- ▶ What if we consider finite values of AMM of quarks ?
- ▶ The immediate change is in the form of energy. Thus we can write

$$\Omega = \frac{(M-m)^2}{4G} - \frac{2N_c}{\beta} \sum_f \frac{|q_f B|}{2\pi} \sum_{n=0}^{\infty} \sum_s \int_{-\infty}^{\infty} \frac{dp_z}{2\pi} \left\{ \beta \omega_{nfs} - \ln(1-n^+) - \ln(1-n^-) \right\}$$

where

$$\omega_{nfs} = \left[p_z^2 + \left\{ \left(\sqrt{|q_f B| \left(2n + 1 - s\right) + M^2} - s\kappa_f q_f B \right)^2 \right\} \right]^{1/2}$$

• One can find out the constituent quark mass by minimizing the thermodynamic potential

$$M = m + 2GN_c \sum_{f} |q_f B| \sum_{n=0}^{\infty} \sum_{\{s\}} \int_{-\infty}^{\infty} \frac{dp_z}{4\pi^2} \frac{M}{\omega_{nfs}} \left(1 - \frac{s\kappa_f q_f B}{M_{nfs}}\right) \left(1 - n^+ - n^-\right)$$

► This regularization will be valid iff $\Lambda^2 - \vec{p}_{\perp}^2 \ge 0$ and $\vec{p}_{\perp}^2 \ge 0$ as p_z, \vec{p}_{\perp} are real quantities. First condition will always be there for finite values of eB but the second condition is only due to non-zero values of AMM of quarks.

- ► This regularization will be valid iff $\Lambda^2 \vec{p}_{\perp}^2 \ge 0$ and $\vec{p}_{\perp}^2 \ge 0$ as p_z, \vec{p}_{\perp} are real quantities. First condition will always be there for finite values of eB but the second condition is only due to non-zero values of AMM of quarks.
- ▶ Putting these condition back we finally get

$$M = m + 4GN_c \sum_{n,f,s} |q_f B| \int_0^{\Lambda_z} \frac{dp_z}{4\pi^2} \Theta\left(\Lambda^2 - \vec{p}_{\perp}^2\right) \Theta\left(\vec{p}_{\perp}^2\right) \frac{M}{\omega_{nfs}} \left(1 - \frac{s\kappa_f q_f B}{M_{nfs}}\right)$$
$$-4GN_c \sum_f |q_f B| \sum_{n=0}^{\infty} \sum_{\{s\}} \int_0^{\infty} \frac{dp_z}{4\pi^2} \frac{M}{\omega_{nfs}} \left(1 - \frac{s\kappa_f q_f B}{M_{nfs}}\right) \left(n^+ + n^-\right)$$

- ► This regularization will be valid iff $\Lambda^2 \vec{p}_{\perp}^2 \ge 0$ and $\vec{p}_{\perp}^2 \ge 0$ as p_z, \vec{p}_{\perp} are real quantities. First condition will always be there for finite values of eB but the second condition is only due to non-zero values of AMM of quarks.
- ▶ Putting these condition back we finally get

$$M = m + 4GN_c \sum_{n,f,s} |q_f B| \int_0^{\Lambda_z} \frac{dp_z}{4\pi^2} \Theta\left(\Lambda^2 - \vec{p}_{\perp}^2\right) \Theta\left(\vec{p}_{\perp}^2\right) \frac{M}{\omega_{nfs}} \left(1 - \frac{s\kappa_f q_f B}{M_{nfs}}\right)$$
$$-4GN_c \sum_f |q_f B| \sum_{n=0}^{\infty} \sum_{\{s\}} \int_0^{\infty} \frac{dp_z}{4\pi^2} \frac{M}{\omega_{nfs}} \left(1 - \frac{s\kappa_f q_f B}{M_{nfs}}\right) \left(n^+ + n^-\right)$$

• If we take the limits $\kappa_f \to 0$ and $q_f B \to 0$ in the above equation, it go back to it's vacuum expression.

Outline

Introduction

Formalism

NJL model at finite temperature and density Effective potential in presence of magnetic field Inclusion of AMM of quarks

Results

Summary

Variation of constituent quark mass (M) and $\partial M/\partial T$ with temperature T

Parameters: $m_0 = 5.6 \text{ MeV}, \Lambda = 587.9 \text{ MeV}, G = 2.44/\Lambda^2$.

Variation of constituent quark mass (M) and $\partial M/\partial T$ with temperature T

Parameters: $m_0 = 5.6$ MeV, $\Lambda = 587.9$ MeV, $G = 2.44/\Lambda^2$.

Variation of constituent quark mass (M) and $\partial M/\partial T$ with temperature T

Parameters: $m_0 = 5.6 \text{ MeV}, \Lambda = 587.9 \text{ MeV}, G = 2.44/\Lambda^2$.

Variation of constituent quark mass (M) and $\partial M/\partial T$ with temperature T

Parameters: $m_0 = 5.6 \text{ MeV}, \Lambda = 587.9 \text{ MeV}, G = 2.44/\Lambda^2$.

$M \text{ vs } T/\mu_q$

$M \text{ vs } T/\mu_q$

M vs T/μ_q

M vs T/μ_q

$M \text{ vs } T/\mu_q$

Phase diagram

Phase diagram

Figure: T_C - $(\mu_q)_C$ phase diagram in NJL model for three different conditions.

Phase diagram

PRD 99 116025

Figure: T_C - $(\mu_q)_C$ phase diagram in NJL model for three different conditions.

▶ The red, green and blue square points represent CEPs

Outline

Introduction

Formalism

NJL model at finite temperature and density Effective potential in presence of magnetic field Inclusion of AMM of quarks

Results

Summary

Summary

- ▶ In this work, we found that the transition temperature from symmetry broken to restored phase increases with external magnetic field showing the enhancement of the quark anti-quark condensate, which can be identified as magnetic catalysis.
- ▶ The opposite behaviour is observed when AMM of quarks is taken into consideration, indicating inverse magnetic catalysis.
- Critical behaviour of chiral susceptibility (χ_{mm}) has been examined in the vicinity of the phase transition.
- ▶ The phase diagram of hot and dense magnetized quark matter is obtained and for finite values of *eB*, the CEP is found to shift towards lower values of temperature and follows an opposite trend when we exclude AMM of quarks.
- Interestingly at high eB for finite values of AMM, the transition remains crossover for larger range of T_C and $(\mu_q)_C$.

- Dr. Snigdha Ghosh, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Dr. Pradip Roy, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Dr. Sourav Sarkar, Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Kolkata 700 064, India

Thank you

- Dr. Snigdha Ghosh, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Dr. Pradip Roy, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Dr. Sourav Sarkar, Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Kolkata 700 064, India

Thank you

- Dr. Snigdha Ghosh, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Dr. Pradip Roy, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Dr. Sourav Sarkar, Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Kolkata 700 064, India

Thank you

- Dr. Snigdha Ghosh, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Dr. Pradip Roy, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Dr. Sourav Sarkar, Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Kolkata 700 064, India

Thank you

- Dr. Snigdha Ghosh, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Dr. Pradip Roy, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Dr. Sourav Sarkar, Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Kolkata 700 064, India

Thank you

- Dr. Snigdha Ghosh, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Dr. Pradip Roy, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Dr. Sourav Sarkar, Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Kolkata 700 064, India

Thank you

- Dr. Snigdha Ghosh, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Dr. Pradip Roy, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Dr. Sourav Sarkar, Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Kolkata 700 064, India

Thank you

Thank you

Expression for ${\cal D}_T$

$$\begin{split} D_T &= 1 - \frac{GN_c}{\pi^2} \sum_f |e_f B| \sum_{n=0}^{\infty} \sum_{\{s\}} \int_0^{\Lambda_z} dp_z \left[\frac{s\kappa_f e_f B M^2}{E_n f_s M_{nf}^3} + \frac{1}{E_n f_s} \left(1 - \frac{s\kappa_f e_f B}{M_n f} \right) - \frac{M^2}{E_{nfs}^3} \right] \\ &\times \left(1 - \frac{s\kappa_f e_f B}{M_n f} \right)^2 \right] - \frac{GN_c}{\pi^2} \sum_f |e_f B| \sum_{n=0}^{\infty} \sum_{\{s\}} \frac{M^2}{(\Lambda^2 + M^2)^{1/2}} \left(1 - \frac{s\kappa_f e_f B}{M_n f} \right) \frac{s\kappa_f e_f B}{\Lambda_z M_n f} \\ &+ \frac{GN_c}{\pi^2} \sum_f |e_f B| \sum_{n=0}^{\infty} \sum_{\{s\}} \int_0^{\infty} dp_z \left[\frac{s\kappa_f e_f B M^2}{E_n f_s M_n^3 f} + \frac{1}{E_n f_s} \left(1 - \frac{s\kappa_f e_f B}{M_n f} \right) - \frac{M^2}{L_{nfs}^3} \right] \\ &- \frac{M^2}{E_{nfs}^3} \left(1 - \frac{s\kappa_f e_f B}{M_n f} \right)^2 \right] \left(n^+ + n^- \right) \\ &- \frac{GN_c}{\pi^2} \sum_f |e_f B| \sum_{n=0}^{\infty} \sum_{\{s\}} \int_0^{\infty} dp_z \beta \left(\frac{M}{E_n f_s} \right)^2 \left(1 - \frac{s\kappa_f e_f B}{M_n f} \right)^2 \left[n^+ (1 - n^+) + n^- (1 + n^-) \right] \\ &- \frac{GN_c}{\pi^2} \sum_f |e_f B| \sum_{n=0}^{\infty} \sum_{\{s\}} \int_0^{\infty} dp_z \beta \left(\frac{M}{E_n f_s} \right)^2 \left(1 - \frac{s\kappa_f e_f B}{M_n f} \right)^2 \right] \\ &= \frac{1}{2} \left[n^+ (1 - n^+) + n^- (1 + n^-) \right] \\ &- \frac{1}{2} \left[n^+ (1 - n^+) + n^- (1 + n^-) \right] \\ &= \frac{1}{2} \left[n^+ (1 - n^+) + n^- (1 +$$

Figure: Variation of scaled entropy density as function of temperature at $\mu_q = 0$.

$$M = m + 4GN_c \sum_f |e_f B| \sum_{n=0}^{\infty} \sum_{\{s\}} \int_0^{\Lambda_z} \frac{dp_z}{4\pi^2} \Theta(\Lambda^2 - \vec{p}_{\perp}^2) \ \Theta(\vec{p}_{\perp}^2) \frac{M}{E_{nfs}} \left(1 - \frac{s\kappa_f e_f B}{M_{nf}}\right)$$

First put all the terms containing the $\kappa_f e_f B$ equals to zero.

$$\begin{split} M &= m + 4GN_c \lim_{B \to 0} \sum_{f} |e_f B| \sum_{n=0}^{\infty} (2 - \delta_{n0}) \\ &\int_{0}^{\sqrt{\Lambda^2 - 2n|e_f B|}} \frac{dp_z}{4\pi^2} \Theta(\Lambda^2 - 2n|e_f B|) \frac{M}{\sqrt{p_z^2 + 2n|e_f B| + M^2}} \\ &= m + \frac{MGN_c}{\pi^2} \lim_{B \to 0} \sum_{f} |e_f B| \sum_{n=0}^{\infty} (2 - \delta_{n0}) \Theta(\Lambda^2 - 2n|e_f B|) \tanh^{-1} \sqrt{\frac{\Lambda^2 - 2n|e_f B|}{\Lambda^2 + M^2}} \end{split}$$

Separating out the contribution of the LLL from the above equation ($\tau_f=2n\,|e_fB|$)

$$M = m + \frac{MGN_c}{\pi^2} \lim_{B \to 0} \sum_f |e_f B| \left[\tanh^{-1} \sqrt{\frac{\Lambda^2}{\Lambda^2 + M^2}} + 2 \sum_{\tau_f = 2|e_f B|}^{\infty} \Theta(\Lambda^2 - \tau_f) \tanh^{-1} \sqrt{\frac{\Lambda^2 - \tau_f}{\Lambda^2 + M^2}} \right]$$

 \sum' denotes an increment of $2e_f B$ of its index rather than 1. Now as $e_f B \to 0$, we can change the summation to an integration continuum limit

$$\sum_{\tau_f}' \to \frac{1}{2e_f B} \int_{2e_f B}^{\infty} d\tau_f.$$

This leads to

$$M = m + \frac{MGN_c}{\pi^2} \sum_f \int_0^\infty d\tau_f \Theta(\Lambda^2 - \tau_f) \tanh^{-1} \sqrt{\frac{\Lambda^2 - \tau_f}{\Lambda^2 + M^2}}$$

Note that, the presence of the step function will restrict the upper limit of the τ_f integration. Performing the remaining $d\tau_f$ integral, we are left with

$$M = m + \frac{GMN_f N_c}{\pi^2} \left[\Lambda \sqrt{\Lambda^2 + M^2} - M^2 \sinh^{-1} \left(\frac{\Lambda}{M} \right) \right]$$

which is same as the vacuum term.

NJL Lagrangian considering AMM of quarks in presence of uniform background magnetic field

$$\begin{aligned} \mathscr{L} &= \bar{\psi}(x) \left(i \not\!\!D - m + \frac{1}{2} \hat{a} \sigma^{\mu\nu} F_{\mu\nu} \right) \psi(x) + G \left\{ \left(\bar{\psi}(x) \psi(x) \right)^2 + \left(\bar{\psi}(x) i \gamma_5 \tau \psi(x) \right)^2 \right\} \\ D_\mu &= \partial_\mu + i Q A_\mu; \qquad \hat{Q} = \operatorname{diag}(2e/3, -e/3); \qquad \hat{a} = \hat{Q} \hat{\kappa}; \qquad \hat{\kappa} = \operatorname{diag}(\kappa_u, \kappa_d); \\ \sigma^{\mu\nu} &= \frac{i}{2} [\gamma^\mu, \gamma^\nu]; \qquad g^{\mu\nu} = \operatorname{diag}(1, -1, -1, -1); \end{aligned}$$

In MFA the Lagrangian becomes

$$\mathscr{L} = \bar{\psi}(x) \left(i \not\!\!D - M + \frac{1}{2} \hat{a} \sigma^{\mu\nu} F_{\mu\nu} \right) \psi(x) - \frac{(M-m)^2}{4G}$$

Regularization at finite eB

 Note that, the medium independent integral is still ultraviolet divergent

$$I_{\rm div} = \int_{-\infty}^{\infty} \frac{dp_z}{4\pi^2} \frac{M}{\omega_{nfs}} \left(1 - \frac{s\kappa_f q_f B}{M_{nfs}} \right)$$

 First, we note that the integrands are even functions of p_z; introducing the field dependent cut-off parameter Λ_z we get,

$$I_{\rm reg} = 2 \int_0^{\Lambda_z} \frac{dp_z}{4\pi^2} \frac{M}{\omega_{nfs}} \left(1 - \frac{s\kappa_f q_f B}{M_{nfs}} \right)$$

where,

$$\Lambda_z = \sqrt{\Lambda^2 - \bar{p}_\perp^2}$$

while Λ being the usual three-momentum cut-off. The quantity \vec{p}_{\perp}^2 inside the square root can be identified from expression for energy

$$\vec{p}_{\perp}^{2} = \left(\sqrt{|q_{f}B|(2n+1-s)+M^{2}}-s\kappa_{f}q_{f}B\right)^{2}-M^{2}$$
$$= |q_{f}B|(2n+1-s)+(\kappa_{f}q_{f}B)^{2}-2sM_{nfs}\kappa_{f}q_{f}B.$$

 $q_f B \to 0$ limit

$$M = m + 4GN_c \sum_f |q_f B| \sum_{n=0}^{\infty} \sum_{\{s\}} \int_0^{\Lambda_z} \frac{dp_z}{4\pi^2} \Theta(\Lambda^2 - \vec{p}_{\perp}^2) \ \Theta(\vec{p}_{\perp}^2) \frac{M}{\omega_{nfs}} \left(1 - \frac{s\kappa_f q_f B}{M_{nfs}}\right)$$

First put all the terms containing the $\kappa_f e_f B$ equals to zero.

$$M = m + 4GN_c \lim_{B \to 0} \sum_{f} |q_f B| \sum_{n=0}^{\infty} (2 - \delta_{n0})$$
$$\int_{0}^{\sqrt{\Lambda^2 - 2n|q_f B|}} \frac{dp_z}{4\pi^2} \Theta(\Lambda^2 - 2n|q_f B|) \frac{M}{\sqrt{p_z^2 + 2n|q_f B| + M^2}}$$
$$= m + \frac{MGN_c}{\pi^2} \lim_{B \to 0} \sum_{f} |q_f B| \sum_{n=0}^{n \max} (2 - \delta_{n0}) \tanh^{-1} \sqrt{\frac{\Lambda^2 - 2n|q_f B|}{\Lambda^2 + M^2}}$$

with $n_{\max} = \left[\Lambda^2/2\,|q_fB|\right]$. Separating out the contribution of the LLL from the above equation($\tau_f=2n\,|q_fB|$)

$$M = m + \frac{MGN_c}{\pi^2} \lim_{B \to 0} \sum_f |q_f B| \left[\tanh^{-1} \sqrt{\frac{\Lambda^2}{\Lambda^2 + M^2}} + 2 \sum_{\tau_f = 2|q_f B|}^{\Lambda^2} ' \tanh^{-1} \sqrt{\frac{\Lambda^2 - \tau_f}{\Lambda^2 + M^2}} \right]$$

As $q_f B \to 0$, we can change the summation to an integration continuum limit

$$\sum_{\tau_f}' \to \frac{1}{2q_f B} \int_{2q_f B}^{\Lambda^2} d\tau_f.$$

$q_f B \to 0$ limit

This leads to

$$M = m + \frac{MGN_c}{\pi^2} \sum_f \int_0^{\Lambda^2} d\tau_f \tanh^{-1} \sqrt{\frac{\Lambda^2 - \tau_f}{\Lambda^2 + M^2}}$$

Note that, the presence of the step function will restrict the upper limit of the τ_f integration. Performing the remaining $d\tau_f$ integral, we are left with

$$M = m + \frac{GMN_f N_c}{\pi^2} \left[\Lambda \sqrt{\Lambda^2 + M^2} - M^2 \sinh^{-1} \left(\frac{\Lambda}{M} \right) \right]$$

which is same as the vacuum term.

Constituent quark mass vs μ_q

Figure: μ_q dependence of Constituent quark mass (M) at (a) T = 30 MeV and (b) at T = 120 MeV for different values of eB and κ .