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Introduction & Motivation

The study of the nuclear matter under extreme conditions of temperature
and/or density has been a subject of intense investigation over the past
few decades.

Where does such a state might exist ?

∗ The microsecond old universe after big-bang.
∗ The core of a neutron star.

Can we create such a state in the laboratory ?

∗ YES : In the Heavy ion collision (HIC) experiments.

However, in a non-central or asymmetric HIC, extremely high magnetic
fields are created (eB ∼ 15m2

π or B ∼ 5× 1015 Tesla).

Thus, in a HIC, we create hot and dense ‘strongly’ interacting magnetized
matter. Many exotic effects/phenomenon can take place:

∗ Chiral Magnetic Effect (CME)
∗ Magnetic Catalysis (MC) and Inverse Magnetic Catalysis (IMC).
∗ Superconductivity of the Vacuum.

In this work, we aim to study the properties of hot and magnetized
mesons (π, σ, ρ and a1) using the 2-flavour NJL model.
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The NJL Model

The Nambu-Jona Lasino (NJL) Model is an effective theory of the
underlying QCD.

It shares the global symmetries of the QCD action, most essentially the
chiral symmetry.

The interaction Lagrangian in 2-flavour NJL model is given by

LNJL = Ψ(iγ
µ
∂µ −m)Ψ + gs

{
(ΨΨ)(ΨΨ)− (Ψγ

5
~τΨ) · (Ψγ5

~τΨ)
}

−gv
{

(Ψγ
µ
~τΨ) · (Ψγµ~τΨ) + (Ψγ

µ
γ

5
~τΨ) · (Ψγµγ5

~τΨ)
}

Ψ =

[
u
d

]
: the quark isospin flavour doublet.

m : the current quark mass (same for both the up and down quarks to
ensure isospin symmetry).

The constituent quark mass is dynamically generated in the NJL model
as a consequence of the spontaneous breaking of chiral symmetry.
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The Dressed Quark Propagator

The ‘complete/dressed’ quark propagator S′(q) is calculated from the
Dyson-Schwinger equation :

S′ = S − SΣS′

S(q,m) = −(�q+m)
q2−m2+iε ⊗ 1Flavour ⊗ 1Colour : the free quark propagator

Σ is the one-loop self energy of quark.

Figure: Feynman digram for one-loop quark self energy. The bold line corresponds to
‘complete/dressed’ quark propagator obtained from the Dyson-Schwinger sum.

Mean Field Approximation (MFA): Σ = ΣMFA1Dirac ⊗ 1Flavour ⊗ 1Colour .
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The Gap Equation

Solving the Dyson-Schwinger Equation:

S′(q,m) = S(q,M) =
−(�q +M)

q2 −M2 + iε
⊗ 1Flavour ⊗ 1Colour

M = m+ ReΣPure-Vac
MFA : the ‘constituent quark mass’.

The above equation is the well known ‘gap equation’.

The quark-self energy in the MFA :

ΣPure-Vac
MFA (M) = −2igs

∫
d4k

(2π)4
Trc,f,d [S′(k,m)] .

The loop particle in the self energy graph is the complete one.

The quark self energy is a function of M itself (since the loop particle is
dressed).

The Gap equation has to be solved self-consistently to calculate M .
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The Quark Self Energy

ΣPure-Vac
MFA = 8gsNcNfM i

∫
d4k

(2π)4

1

k2 −M2 + iε

The momentum integral in the above equation is ultra-violate (UV)
divergent.

The NJL model, being a non-renormalizable theory, requires a proper
regularization scheme.

There exists many such UV-regulators in the literature such as:

∗ Three-momentum cutoff, Euclidean four-momentum cutoff,
∗ Pauli-Villars regulator, Proper time regulator.

The mostly used regulator is the momentum cutoff which breaks the
Lorentz invariance and usually every symmetry of the theory.

The momentum cutoff regulator (or any other regulator which breaks
Lorentz invariance) is not useful to study the vector meson ρ or axial
vector meson a1 in the NJL model.
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Way out: The ‘dimensional regularization’ which respects all the
symmetries of the theory.

Going to d-dimension, we get:

ReΣPure-Vac
MFA = 2gs

NcNfM
3

4π2

(
4πλ

M2

)ε
Γ (ε− 1)

ε = 2− d/2.

The UV-divergence has been isolated as the pole of the Gamma function.

Regularization Procedure:

Γ(ε− 1)→ Γ

(
ε− 1,

M2

Λ2

)
Λ : is a scale parameter to be determined.

The quark self-energy becomes:

ReΣPure-Vac
MFA = 2gs

NcNfM
3

4π2
Γ

(
−1,

M2

Λ2

)
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Quark Self Energy at T 6= 0 and B 6= 0

Real Time Formalism (RTF) of finite temperature field theory and the
Schwinger propertime formalism have been used.
Thermo-magnetic self energy function:

ReΣMFA(M,B, T ) = ReΣ
Pure-Vac
MFA (M) + ReΣ

B-Vac
MFA (M,B) + ReΣ

B-Med
MFA (M,B, T )

The real part of the magnetic field dependent vacuum contribution:

Σ
B-Vac
MFA (M,B) = −2gs

MNc

4π2

∑
f∈{u,d}

[
−M2

+
(
M

2 − |efB|
)

ln

(
M2

2|efB|

)

−2|efB|
{

ln Γ

(
M2

2|efB|

)
− ln

√
2π

}]

The medium part ( function of both the temperature and magnetic field)

ReΣ
B-Med
MFA (M,B, T ) = −2gs

NcM

π2

∑
f∈{u,d}

|efB|
∞∑
l=0

(2− δ0
l )

∫ ∞
0

dkz
1

ωlfk
f(ω

lf
k ) .

ωlfk =
√
k2
z +M2 + 2l|efB| : Landau quantized energy.

NO APPROXIMATION on the strength of the magnetic field.
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Polarization Functions of the mesons

Mesons are the bound state of quarks and anti-quarks.

Their propagation can be studied from the scattering of quarks in
different channels using the Bethe-Salpeter approach.

In order to calculate the meson propagators, we need to calculate the
following one-loop polarization functions.

At T = B = 0, they are:

Ππ(q) = −i
∫

d4k

(2π)4
Trd,f,c

[
γ

5
τ3S
′
(q + k,m)γ

5
τ3S
′
(k,m)

]
Πσ(q) = i

∫
d4k

(2π)4
Trd,f,c

[
S
′
(q + k,m)S

′
(k,m)

]
Π
µν
ρ (q) = −i

∫
d4k

(2π)4
Trd,f,c

[
γ
µ
τ3S
′
(q + k,m)γ

ν
τ3S
′
(k,m)

]
Π
µν
a1

(q) = −i
∫

d4k

(2π)4
Trd,f,c

[
γ
µ
γ

5
τ3S
′
(q + k,m)γ

ν
γ

5
τ3S
′
(k,m)

]
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Mesons are the bound state of quarks and anti-quarks.

Their propagation can be studied from the scattering of quarks in
different channels using the Bethe-Salpeter approach.
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After some calculation:

Ππ(q) =
NcNf

4π2

[
1

2
q
2
Γ

(
0,
M2

Λ2

)
+M

2
Γ

(
−1,

M2

Λ2

)]

Πσ(q) =
NcNf

4π2

[
1

2
(q

2 − 4M
2
)Γ

(
0,
M2

Λ2

)
+M

2
Γ

(
−1,

M2

Λ2

)]

Π
µν
ρ (q) = −

NcNf

12π2
Γ

(
0,
M2

Λ2

)
q
2

(
g
µν −

qµqν

q2

)

Π
µν
a1

(q) = −
NcNf

12π2
Γ

(
0,
M2

Λ2

)[(
q
2 − 6M

2
)(

g
µν −

qµqν

q2

)
− 6M

2 q
µqν

q2

]
.

If the chiral symmetry is completely restored (i.e. M = 0), then the
polarization functions of σ and a1 become identical to that of π and ρ
respectively.

The polarization function of ρ is transverse i.e. qµΠµν
ρ (q) = 0.

Reason: the conservation of the vector current Jµ(x) = Ψ(x)γµΨ, i.e.
∂µJ

µ = 0 .

For a1, the non-transverse piece is proportional to the constituent quark
mass M .

Reason: The non-conservation of the axial-vector current
J5µ = Ψ(x)γµγ5Ψ whose four-divergence is ∂µJ

5µ ∝M .
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Polarization Functions at T 6= 0 and B 6= 0

Real Time Formalism (RTF) of finite temperature field theory and the
Schwinger propertime formalism have been used.

Thermo-magnetic polarization functions:

ReΠh(q‖) = ReΠh(q‖) + ReΠhB(q‖, B) −
∞∑
l=0

(l+1)∑
n=(l−1)

∑
f∈{u,d}

∫ ∞
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dkz

2π
P

 N
lnf
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k

)f(ω
lf
k
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k

{
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p )2

}
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N
lnf
h
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nf
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N
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nf
p

{
(q0 + ω

nf
p )2 − (ω

lf
k

)2
} +

N
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Looks Very Nasty ..... .... DOES NOT
EVEN FIT IN THE SLIDE

ΠπB(q‖, B) =
Nc

4π2

∑
f∈{u,d}

∫ 1

0
dx

[ (
2M

2 − 3∆ + |efB|
)

ln z + 2
(
∆ −M2

)
ψ(z) −M2

/z

+2|efB|
{
ln Γ(z) − ln

√
2π
}

+ ∆

]
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Meson Propagators

For the scalar (σ) and pseudo-scalar (π) channels, it is trivial to obtain:

D′h(q) =
−2gs

1− 2gsΠh
; h ∈ {π, σ}

For vector (ρ) and axial-vector (a1) channels: Additional complications
arise because of the Lorentz indices.

Way out : To find Lorentz decomposition of the polarization functions of
ρ and a1 in a suitable tensor basis.

Constraint: The polarization tensors are symmetric

Πµν
ρ,a1

= Πνµ
ρ,a1
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ρ and a1 in a suitable tensor basis.

Constraint: The polarization tensors are symmetric

Πµν
ρ,a1

= Πνµ
ρ,a1
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Lorentz Basis at T = 0 and B = 0

The available quantities to construct a tensor basis are the momentum of
the meson qµ and the metric tensor gµν .

Only two basis tensors can be constructed which are the following:

Pµν1 =

(
gµν − qµqν

q2

)
Pµν2 =

qµqν

q2
.
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Lorentz Basis at T 6= 0 and B = 0

Apart from qµ and gµν , in this case we have an additional four-vector uµ.

Thus we can choose the following four tensors as the basis:

P
µν

1 =

(
gµν − qµqν

q2
− ũµũν

ũ2

)
P
µν

2 =
qµqν

q2

P
µν

3 =
ũµũν

ũ2

P
µν

4 =
1√
q2ũ2

(qµũν + qν ũµ)

where

ũµ = uµ − (q · u)

q2
qµ

DAE-BRNS Symposium on CETHENP 19 / 32



19/32

Lorentz Basis at T 6= 0 and B = 0

Apart from qµ and gµν , in this case we have an additional four-vector uµ.

Thus we can choose the following four tensors as the basis:

P
µν

1 =

(
gµν − qµqν

q2
− ũµũν
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Lorentz Basis at T 6= 0 and B 6= 0

Another four vector bµ appears which specify the direction of the external
magnetic field in the LRF. In the LRF, we have bµLRF ≡ (0, 0, 0, 1).
Using qµ, uµ, bµ and gµν , we can construct the following seven orthogonal
tensors:

P
µν

1 =

(
g
µν −

qµqν

q2
−
ũµũν

ũ2
−
b̃µb̃ν

b̃2

)

P
µν

2 =
qµqν

q2

P
µν

3 =
ũµũν

ũ2

P
µν

4 =
b̃µb̃ν

ũ2

P
µν

5 =
1√
q2ũ2

(
q
µ
ũ
ν

+ q
ν
ũ
µ)

P
µν

6 =
1√
q2b̃2

(
q
µ
b̃
ν

+ q
ν
b̃
µ
)

P
µν

7 =
1√
ũ2b̃2

(
ũ
µ
b̃
ν

+ ũ
ν
b̃
µ
)

where, b̃µ = bµ − (q·b)
q2 qµ − (ũ·b)

ũ2 ũµ .
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ũµũν
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ρ and a1 Propagators

The ρ and a1 polarization functions and propagators can be expanded in the constructed
basis as:

Π
µν

H =

7∑
i=1

ΠHiP
µν

i ; D
′µν
H =

7∑
i=1

DHiP
µν

i

where,

DH1 =

 2gv

1 + 2gvΠH1


DH2 =

1

ATB
2gv

[(
1 + 2gvΠH3

) (
1 + 2gvΠH4

)
−
(
2gvΠH7

)2]

DH3 =
1

ATB
2gv

[(
1 + 2gvΠH2

) (
1 + 2gvΠH4

)
−
(
2gvΠH6

)2]

DH4 =
1

ATB
2gv

[(
1 + 2gvΠH2

) (
1 + 2gvΠH3

)
−
(
2gvΠH5

)2]

DH5 =
1

ATB
2gv

[(
2gvΠH6

) (
2gvΠH7

)
−
(
1 + 2gvΠH4

) (
2gvΠH5

)]

DH6 =
1

ATB
2gv

[(
2gvΠH5

) (
2gvΠH7

)
−
(
1 + 2gvΠH3

) (
2gvΠH6

)]

DH7 =
1

ATB
2gv

[(
2gvΠH5

) (
2gvΠH6

)
−
(
1 + 2gvΠH2

) (
2gvΠH7

)]
with,

ATB =
(
1 + 2gvΠH2

) (
1 + 2gvΠH3

) (
1 + 2gvΠH4

)
−
(
1 + 2gvΠH2

) (
2gvΠH7

)2 − (1 + 2gvΠH3

) (
2gvΠH6

)2
−
(
1 + 2gvΠH4

) (
2gvΠH5

)2
+
(
2gvΠH5

) (
2gvΠH6

) (
2gvΠH7

)
.
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1 Introduction & Motivation

2 The NJL Model

3 The Constituent Quark Mass & The Dressed Quark Propagator

4 Meson Propagation

5 Results
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Constituent Quark Mass
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Figure: Variation of the constituent quark mass (M) as a function of (a) temperature
for different values of external magnetic field and (b) external magnetic field for
different values of temperature.
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Susceptibilities
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magnetic field.
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Spectral Functions of π and σ
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Figure: Spectral function of π0 and σ mesons as a function of invariant mass for
~q = ~0 at different values of temperature and external magnetic field. The arrows
represent Dirac delta functions.
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Spectral Functions of ρ and a1
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Figure: Spectral function of ρ0 and a01 mesons as a function of invariant mass for
~q = ~0 at different values of temperature and external magnetic field.
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Comparison of Spectral Functions: Chiral Symmetry
Restoration
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Figure: Comparison of the spectral functions of π0 with σ and ρ0 with a01 at T = 250
MeV, q⊥ = 0 for different values of their longitudinal momentum (qz = 0 and 500
MeV).
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Meson Masses
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Figure: Variation of masses of π0, σ, ρ0 and a01 as a function of (a) temperature at
B = 0 and (b) external magnetic field at T = 0. The variation of twice of the
constituent quark mass is also shown in (a).
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Figure: Variation of masses of (a) π0, (b) σ, (c) ρ0 and (d) a01 as a function of
temperature for different values of external magnetic field.

DAE-BRNS Symposium on CETHENP 29 / 32



30/32

Dispersion Curves of π and σ
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Figure: The dispersion curves of π0 and σ meson with vanishing transverse
momentum (q⊥ = 0) for different values of temperature and external magnetic field.
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Dispersion Curves of ρ and a1

 0.7

 0.8

 0.9

-0.4 -0.2  0  0.2  0.4

qperp = 0

T = 0

(a)

ω
ρ
 (

G
eV

)
eB = 0, Mode-(A)
eB = 0, Mode-(B)

 0.7

 0.8

 0.9

-0.4 -0.2  0  0.2  0.4

 0.7

 0.8

 0.9

-0.4 -0.2  0  0.2  0.4

T = 150 MeV

(b)

eB = 0.10 GeV
2
, Mode-(A)

eB = 0.10 GeV
2
, Mode-(B)

 0.7

 0.8

 0.9

-0.4 -0.2  0  0.2  0.4

 0.6

 0.7

 0.8

-0.4 -0.2  0  0.2  0.4

T = 200 MeV

(c)

ω
ρ
 (

G
eV

)

qz (GeV)

 0.6

 0.7

 0.8

-0.4 -0.2  0  0.2  0.4

 0.6

 0.7

 0.8

-0.4 -0.2  0  0.2  0.4

T = 250 MeV

(d)

qz (GeV)

 0.6

 0.7

 0.8

-0.4 -0.2  0  0.2  0.4

 0.6

 0.7

 0.8

 0.9

-0.4 -0.2  0  0.2  0.4

qperp = 0

T = 0

(e)

ω
ρ
 (

G
eV

)

eB = 0, Mode-(A)
eB = 0, Mode-(B)

 0.6

 0.7

 0.8

 0.9

-0.4 -0.2  0  0.2  0.4

 0.6

 0.7

 0.8

 0.9

-0.4 -0.2  0  0.2  0.4

T = 150 MeV

(f)

eB = 0.15 GeV
2
, Mode-(A)

eB = 0.15 GeV
2
, Mode-(B)

 0.6

 0.7

 0.8

 0.9

-0.4 -0.2  0  0.2  0.4

 0.6

 0.7

 0.8

-0.4 -0.2  0  0.2  0.4

T = 200 MeV

(g)

ω
ρ
 (

G
eV

)

qz (GeV)

 0.6

 0.7

 0.8

-0.4 -0.2  0  0.2  0.4

 0.6

 0.7

 0.8

-0.4 -0.2  0  0.2  0.4

T = 250 MeV

(h)

qz (GeV)

 0.6

 0.7

 0.8

-0.4 -0.2  0  0.2  0.4

 0.8

 0.9

 1

-0.4 -0.2  0  0.2  0.4

qperp = 0

T = 0

(i)

ω
a 1

 (
G

eV
)

eB = 0, Mode-(A)
eB = 0, Mode-(B)

 0.8

 0.9

 1

-0.4 -0.2  0  0.2  0.4

 0.8

 0.9

 1

-0.4 -0.2  0  0.2  0.4

T = 150 MeV

(j)

eB = 0.10 GeV
2
, Mode-(A)

eB = 0.10 GeV
2
, Mode-(B)

 0.8

 0.9

 1

-0.4 -0.2  0  0.2  0.4

 0.6

 0.7

 0.8

-0.4 -0.2  0  0.2  0.4

T = 200 MeV

(k)

ω
a 1

 (
G

eV
)

qz (GeV)

 0.6

 0.7

 0.8

-0.4 -0.2  0  0.2  0.4

 0.6

 0.7

 0.8

-0.4 -0.2  0  0.2  0.4

T = 250 MeV

(l)

qz (GeV)

 0.6

 0.7

 0.8

-0.4 -0.2  0  0.2  0.4

 0.8

 0.9

 1

 1.1

-0.4 -0.2  0  0.2  0.4

qperp = 0

T = 0

(m)
ω

a 1
 (

G
eV

)

eB = 0, Mode-(A)
eB = 0, Mode-(B)

 0.8

 0.9

 1

 1.1

-0.4 -0.2  0  0.2  0.4

 0.8

 0.9

 1

 1.1

-0.4 -0.2  0  0.2  0.4

T = 150 MeV

(n)

eB = 0.15 GeV
2
, Mode-(A)

eB = 0.15 GeV
2
, Mode-(B)

 0.8

 0.9

 1

 1.1

-0.4 -0.2  0  0.2  0.4

 0.7

 0.8

 0.9

-0.4 -0.2  0  0.2  0.4

T = 200 MeV

(o)

ω
a 1

 (
G

eV
)

qz (GeV)

 0.7

 0.8

 0.9

-0.4 -0.2  0  0.2  0.4

 0.7

 0.8

 0.9

-0.4 -0.2  0  0.2  0.4

T = 250 MeV

(p)

qz (GeV)

 0.7

 0.8

 0.9

-0.4 -0.2  0  0.2  0.4

Figure: The dispersion curves of ρ0 and a01 meson with vanishing transverse
momentum (q⊥ = 0) for different values of temperature and external magnetic field.
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