Latest updates on the QCD phase diagram from lattice

Sayantan Sharma

The Institute of Mathematical Sciences

Nov 26, 2019

Sayantan Sharma CETHENP 2019, VECC

Slide 1 of 26

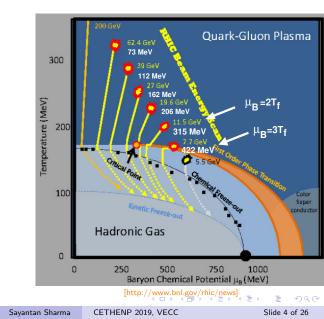
 $\exists \rightarrow$

2 Critical-end point search from lattice

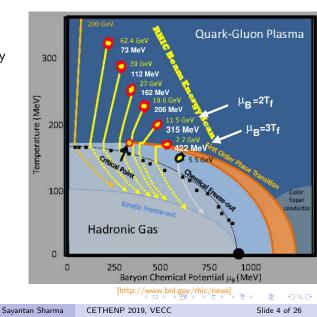
A 10

2 Critical-end point search from lattice

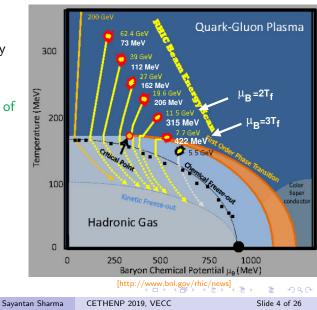
< 回 > < 回 > < 回 >



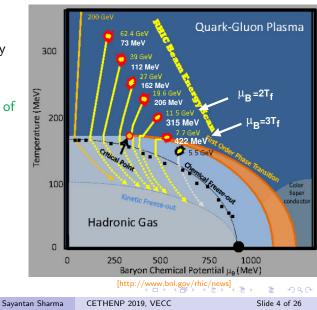
• For RHIC Beam Energy Scan-II: Equation of State for $\mu_B/T \leq 3$.



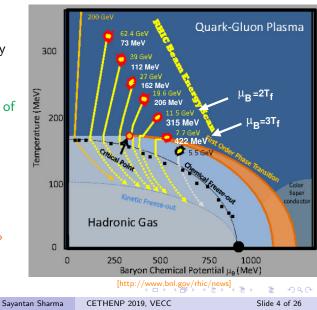
- For RHIC Beam Energy Scan-II: Equation of State for $\mu_B/T \leq 3$.
- Measure the curvature of chiral crossover line.



- For RHIC Beam Energy Scan-II: Equation of State for $\mu_B/T \leq 3$.
- Measure the curvature of chiral crossover line.
- Look for possible existence of critical end-point in the phase diagram.



- For RHIC Beam Energy Scan-II: Equation of State for $\mu_B/T \leq 3$.
- Measure the curvature of chiral crossover line.
- Look for possible existence of critical end-point in the phase diagram.
- Relevant degrees of freedom of the phases?



- Conventional Monte-Carlo methods suffer from sign problem at finite μ_q .
- Two methods presently allow to go to thermodynamic and continuum limits.
- For imaginary μ_q the fermion determinant real and positive \rightarrow no sign-problem.

→

- Conventional Monte-Carlo methods suffer from sign problem at finite μ_q .
- Two methods presently allow to go to thermodynamic and continuum limits.
- For imaginary μ_q the fermion determinant real and positive \rightarrow no sign-problem.
- $Z_{QCD}(\mu_q/T) = Z_{QCD}(\mu_q/T + 2ni\pi/3)$ implies Roberge-Weiss end-points at $\mu_q/T = (2n+1)i\pi/3$.

伺い イヨト イヨト

- Conventional Monte-Carlo methods suffer from sign problem at finite μ_q .
- Two methods presently allow to go to thermodynamic and continuum limits.
- For imaginary μ_q the fermion determinant real and positive \rightarrow no sign-problem.
- $Z_{QCD}(\mu_q/T) = Z_{QCD}(\mu_q/T + 2ni\pi/3)$ implies Roberge-Weiss end-points at $\mu_q/T = (2n+1)i\pi/3$.
- Calculate baryon no. density at several $\mu_q/T < i\pi/3$.

4 戸下 4 戸下 4 戸下

- Conventional Monte-Carlo methods suffer from sign problem at finite μ_q .
- Two methods presently allow to go to thermodynamic and continuum limits.
- For imaginary μ_q the fermion determinant real and positive \rightarrow no sign-problem.
- $Z_{QCD}(\mu_q/T) = Z_{QCD}(\mu_q/T + 2ni\pi/3)$ implies Roberge-Weiss end-points at $\mu_q/T = (2n+1)i\pi/3$.
- Calculate baryon no. density at several $\mu_q/T < i\pi/3$.
- Fitting it to a polynomial in μ_q analytically continue in the real- μ plane.

(4月) (4日) (4日) 日

- Conventional Monte-Carlo methods suffer from sign problem at finite μ_q .
- Two methods presently allow to go to thermodynamic and continuum limits.
- For imaginary μ_q the fermion determinant real and positive \rightarrow no sign-problem.
- $Z_{QCD}(\mu_q/T) = Z_{QCD}(\mu_q/T + 2ni\pi/3)$ implies Roberge-Weiss end-points at $\mu_q/T = (2n+1)i\pi/3$.
- Calculate baryon no. density at several $\mu_q/T < i\pi/3$.
- Fitting it to a polynomial in μ_q analytically continue in the real- μ plane.
- Limited due to discontinuities at Roberge-Weiss end-points!.

・同・ ・ヨ・ ・ヨ・ ・ヨ

Lattice techniques at finite μ_B -II

• Taylor expansion of physical observables around $\mu = 0$ in powers of μ/T [Bi-Swansea collaboration, 02]

$$\frac{P(\mu_B, T)}{T^4} = \frac{P(0, T)}{T^4} + \left(\frac{\mu_B}{T}\right)^2 \frac{\chi_2^B(0, T)}{2T^2} + \left(\frac{\mu_B}{T}\right)^4 \frac{\chi_4^B(0)}{4!} + \dots$$
$$\mathbf{P_2} \qquad \mathbf{P_4}$$

• The series for $\chi_2^B(\mu_B)$ should diverge at the critical point. On finite lattice χ_2^B peaks, ratios of Taylor coefficients equal, indep. of volume [Gavai& Gupta, 03]

(日本) (日本) (日本)

• The fluctuations of conserved charges can be expressed in terms of Quark no. susceptibilities (QNS).

- The fluctuations of conserved charges can be expressed in terms of Quark no. susceptibilities (QNS).
- QNS χ_{ij} 's can be written as derivatives of the Dirac operator.

Example: $\chi_2^u = \frac{T}{V} \langle Tr(D_u^{-1}D_u^{''} - (D_u^{-1}D_u^{'})^2) + (Tr(D_u^{-1}D_u^{'}))^2 \rangle$. $\chi_{11}^{us} = \frac{T}{V} \langle Tr(D_u^{-1}D_u^{'}D_s^{-1}D_s^{'}) \rangle$.

A 3 4

- The fluctuations of conserved charges can be expressed in terms of Quark no. susceptibilities (QNS).
- QNS χ_{ij} 's can be written as derivatives of the Dirac operator.

Example: $\chi_2^u = \frac{T}{V} \langle Tr(D_u^{-1}D_u^{''} - (D_u^{-1}D_u^{'})^2) + (Tr(D_u^{-1}D_u^{'}))^2 \rangle$. $\chi_{11}^{us} = \frac{T}{V} \langle Tr(D_u^{-1}D_u^{'}D_s^{-1}D_s^{'}) \rangle$.

Higher derivatives → more inversions
 Inversion is the most expensive step on the lattice !

A 3 4

- The fluctuations of conserved charges can be expressed in terms of Quark no. susceptibilities (QNS).
- QNS χ_{ij} 's can be written as derivatives of the Dirac operator.

Example: $\chi_2^u = \frac{T}{V} \langle Tr(D_u^{-1}D_u^{''} - (D_u^{-1}D_u^{'})^2) + (Tr(D_u^{-1}D_u^{'}))^2 \rangle$. $\chi_{11}^{us} = \frac{T}{V} \langle Tr(D_u^{-1}D_u^{'}D_s^{-1}D_s^{'}) \rangle$.

- Higher derivatives → more inversions
 Inversion is the most expensive step on the lattice !
- Why extending to higher orders so difficult?

伺い イヨト イヨト

- The fluctuations of conserved charges can be expressed in terms of Quark no. susceptibilities (QNS).
- QNS $\chi_{ij}{}^{\prime}{\rm s}$ can be written as derivatives of the Dirac operator.

Example: $\chi_2^u = \frac{T}{V} \langle Tr(D_u^{-1}D_u^{''} - (D_u^{-1}D_u^{'})^2) + (Tr(D_u^{-1}D_u^{'}))^2 \rangle$. $\chi_{11}^{us} = \frac{T}{V} \langle Tr(D_u^{-1}D_u^{'}D_s^{-1}D_s^{'}) \rangle$.

- Higher derivatives → more inversions
 Inversion is the most expensive step on the lattice !
- Why extending to higher orders so difficult?
 - Matrix inversions increasing with the order

同下 イヨト イヨト

- The fluctuations of conserved charges can be expressed in terms of Quark no. susceptibilities (QNS).
- QNS χ_{ij} 's can be written as derivatives of the Dirac operator.

Example: $\chi_2^u = \frac{T}{V} \langle Tr(D_u^{-1}D_u^{''} - (D_u^{-1}D_u^{'})^2) + (Tr(D_u^{-1}D_u^{'}))^2 \rangle$. $\chi_{11}^{us} = \frac{T}{V} \langle Tr(D_u^{-1}D_u^{'}D_s^{-1}D_s^{'}) \rangle$.

- Higher derivatives → more inversions Inversion is the most expensive step on the lattice !
- Why extending to higher orders so difficult?
 - Matrix inversions increasing with the order
 - Delicate cancellation between a large number of terms for higher order QNS.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

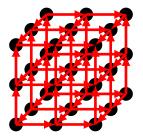
- The fluctuations of conserved charges can be expressed in terms of Quark no. susceptibilities (QNS).
- QNS χ_{ij} 's can be written as derivatives of the Dirac operator.

Example: $\chi_2^u = \frac{T}{V} \langle Tr(D_u^{-1}D_u^{''} - (D_u^{-1}D_u^{'})^2) + (Tr(D_u^{-1}D_u^{'}))^2 \rangle$. $\chi_{11}^{us} = \frac{T}{V} \langle Tr(D_u^{-1}D_u^{'}D_s^{-1}D_s^{'}) \rangle$.

- Higher derivatives → more inversions Inversion is the most expensive step on the lattice !
- Why extending to higher orders so difficult?
 - Matrix inversions increasing with the order
 - Delicate cancellation between a large number of terms for higher order QNS.
- A new method of introducing μ developed makes it easier to access higher order QNS. [Gavai & Sharma, 15, De Forcrand & Jaeger, 18]

▲ 御 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ● ●

Our Set-up



- $V = N^3 a^3$, Box size: $m_{\pi} V^{1/3} > 4$.
- $T = \frac{1}{N_{\tau}a}$ We use $N_{\tau} = 6, 8, 12, 16$ lattices for $\chi_{2,4}$ and $N_{\tau} = 6, 8$ for higher order fluctuations.
- Input m_s physical and $m_\pi^G = 160$ MeV for T > 175 MeV and $m_\pi^G = 140$ MeV for T <= 175 MeV.

EoS in the constrained case

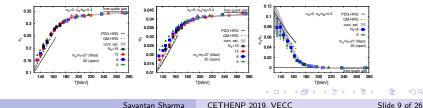
• In most central heavy-ion experiments typically:

 $n_5 = 0$, Strangeness neutrality, $\frac{n_Q}{n_B} = \frac{n_P}{n_P + n_N} = 0.4.$ [Bi-BNL collaboration, 1208.1220]

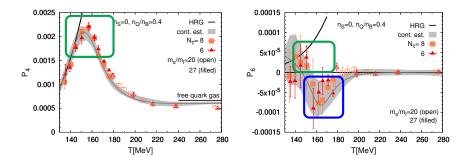
- For lower \sqrt{s} collisions: Need to understand baryon stopping!
- Imposes non-trivial constraints on the variation of μ_S and μ_Q .
- Possible to vary them by only varying μ_B through

$$\mu_{S} = s_{1}\mu_{B} + s_{3}\mu_{B}^{3} + s_{5}\mu_{B}^{5} + \dots$$

$$\mu_{Q} = q_{1}\mu_{B} + q_{3}\mu_{B}^{3} + q_{5}\mu_{B}^{5} + \dots$$



- Central values of P_4 , P_6 already deviate from Hadron Resonance gas model at T > 145 MeV \rightarrow need to analyze the errors on P_6 better.
- P_6 has characteristic structure at $T > T_c \rightarrow$ remnant of the chiral symmetry due to the light quarks. Effects of $U_A(1)$ anomaly?
- Essentially non-perturbative \rightarrow cannot be predicted within Hard Thermal Loop perturbation theory.



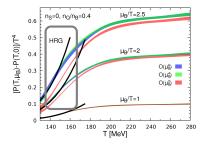
Sayantan Sharma CETHENP 2019, VECC

Slide 10 of 26

(4月) イヨト イヨト

EoS in the constrained case

- The EoS is well under control for $\mu_B/T \sim 2.5$ with χ_6 .
- Full parametric dependence for N_B on T available in arxiv: 1701.04325.
- Expanding to $\mu_B/T = 3$, need to calculate χ_8 !



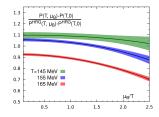


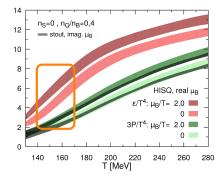
Image: A image: A

Summary for the EoS

• Continuum estimates from two different fermion discretization agree for $\mu_B/T \leq 2$.

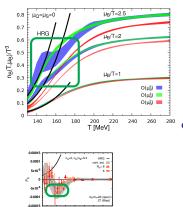
[Bielefeld-BNL-CCNU collaboration, 1701.04325, Borsanyi et. al, 1606.07494].

• Steeper EoS for RHIC energies compared to LHC energy.



A 10

Baryon number density



• χ_6 contribution is 30-times larger than in pressure.

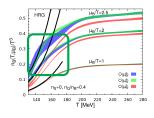
$$\frac{N(\mu_B)}{T^3} = \frac{\mu_B}{T} \chi_2^B(0) + \frac{1}{2} \left(\frac{\mu_B}{T}\right)^4 \chi_4^B(0)$$

+ $\frac{1}{4!} \left(\frac{\mu_B}{T}\right)^6 \chi_6^B(0) + \dots$

• Strongly sensitive to the singular part of χ_6^B .

• For strangeness neutral system, effect is milder.

TIMeV



CETHENP 2019, VECC

Do we understand the degrees of freedom around T_c ?

• For a strongly interacting medium a quasi-particle description may not exist.

Do we understand the degrees of freedom around T_c ?

• For a strongly interacting medium a quasi-particle description may not exist.

• Initially believed that thermodynamic properties of QCD can be very well described by a non-interacting gas of hadrons+resonances.

[Dashen, Ma and Bernstein, 69,71]

Do we understand the degrees of freedom around T_c ?

 For a strongly interacting medium a quasi-particle description may not exist.

 Initially believed that thermodynamic properties of QCD can be very well described by a non-interacting gas of hadrons+resonances.
 [Dashen, Ma and Bernstein, 69,71]

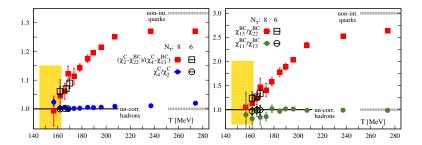
• With very precise lattice data we now know HRG description breaks down much below $T_c!$. [A. Bazavov et. al. HotQCD coll. 1404.6511]

↓ ∃ >

Why should naive HRG description break down?

• There may be many more baryon states and resonances than currently measured especially in the strangeness and charm sectors.

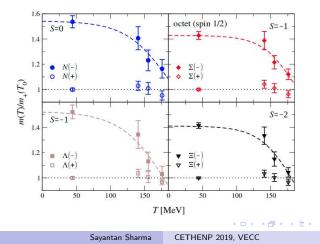
[A. Bazavov et. al. HotQCD coll. 1404.6511].



Why should naive HRG description break down?

- All baryon channels do not have resonant interactions.
- In-medium modification of baryon masses ?

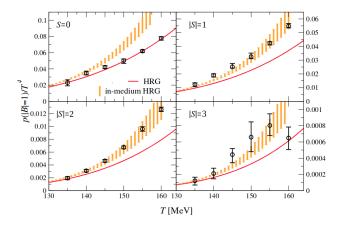
[G. Aarts et. al., 1812.07393].



Why should naive HRG description break down?

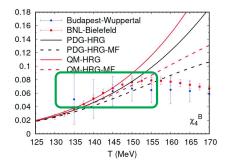
• Thermal width of the resonances?

[G. Aarts et. al., 1812.07393]



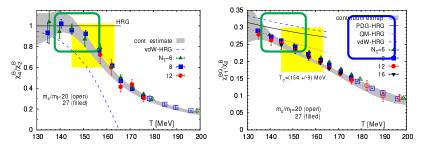
Can $T < T_c$ be described by Hadron Resonance Gas?

- Higher order fluctuations of conserved charges are more sensitive to the departure from HRG.
- Repulsive baryon interactions?
- Lattice data for higher order baryon no. fluc. are precise enough to distinguish between diff. scenarios \rightarrow support additional resonances from quark-models+interactions



[P. Huovinen, P. Petreczky, 1811.09330]

Can $T < T_c$ be described by Hadron Resonance Gas?



[F. Karsch, QM17 proceedings, 1706.01620]

 Including Van der Waal's interaction for baryons+non-interacting mesons+resonances, new versions of HRG has been studied → significant deviation from non-interacting HRG.

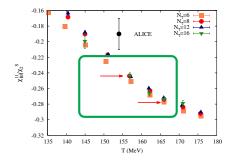
[V. Vovchenko, M. I. Gorenstein and H. Stoecker 1609.03975]

Lattice data can constrain such models strongly!
 Currently none of these models are perfect to describe QCD at freezeout.

- 4 周 b - 4 B b - 4 B b

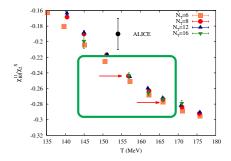
Cross-correlations

• Off-diagonal fluctuations are more sensitive to deviation from HRG and baryon interactions.



Cross-correlations

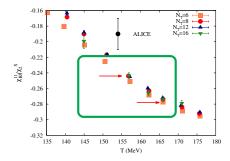
• Off-diagonal fluctuations are more sensitive to deviation from HRG and baryon interactions.



• χ_{11}^{BS}/χ_2^S shows ~ 15% deviation between 155 and 165 MeV. Analysis with ALICE [A. Andronic et. al., 16] consistent with lattice at $T_c \sim 155$ MeV. Including $\Sigma^* \to N\bar{K}$ will make the ratio lower!

Cross-correlations

• Off-diagonal fluctuations are more sensitive to deviation from HRG and baryon interactions.



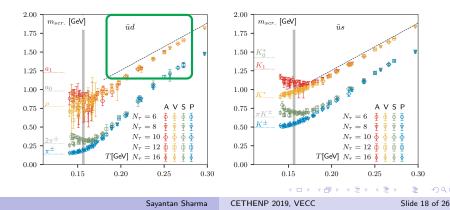
• χ_{11}^{BS}/χ_2^S shows ~ 15% deviation between 155 and 165 MeV. Analysis with ALICE [A. Andronic et. al., 16] consistent with lattice at $T_c \sim 155$ MeV. Including $\Sigma^* \rightarrow N\bar{K}$ will make the ratio lower!

• Similar results at higher μ_B would be interesting! [A. Chatterjee et. al.,STAR collaboration, 2019]

How perturbative is the QGP medium at high T?

 Screening masses show how perturbative is the medium → less IR sensitive, more perturbative than gluonic observables.

 $C(z) = \int_0^{1/T} d\tau dx dy \langle \mathcal{O}^{\dagger}(x, y, z, \tau) \mathcal{O}(0, 0, 0, 0) \rangle \ \sim \mathrm{e}^{-\mathrm{m}_{\mathcal{O}} z}, z \to \infty,$

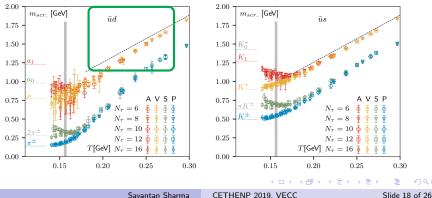


How perturbative is the QGP medium at high T?

 Screening masses show how perturbative is the medium → less IR sensitive, more perturbative than gluonic observables.

 $C(z) = \int_0^{1/T} d\tau dx dy \langle \mathcal{O}^{\dagger}(x, y, z, \tau) \mathcal{O}(0, 0, 0, 0) \rangle \ \sim \mathrm{e}^{-\mathrm{m}_{\mathcal{O}} z}, z \to \infty,$

• Vector like excitations $\mathcal{O} = \bar{\psi}\gamma_{\mu}\psi$ reach the perturbative estimate quickly than pseudo-scalar excitations $M/T = 2\pi + \frac{g^2 C_F}{2\pi} (E_0 + 1/2)$ [HotQCD coll., 2019].



The QCD phase diagram: Latest results

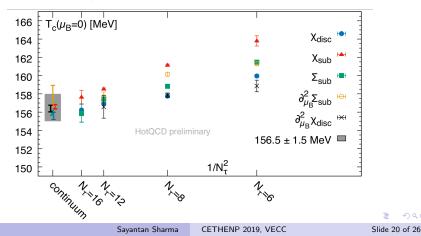
2 Critical-end point search from lattice

→

< 🗇 > < 🖃 >

Curvature of the chiral crossover line

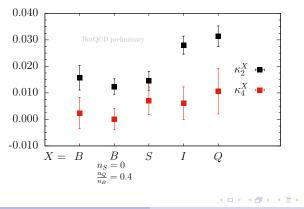
- Since $m_{u,d} \ll \Lambda_{QCD}$ the $SU_L(2) \times SU_R(2)$ is a near exact symmetry of 2 + 1 flavor QCD.
- Though not strictly a phase transition, however all chiral observables show observable changes at a certain temperature. It thus makes sense to talk about a precise $T_c^{pc} = 156.5 \pm 1.5$. [HotQCD collaboration, 1812.08235]



Curvature of the chiral crossover line

•
$$\frac{T_c(\mu_X)}{T_c(0)} = 1 - \kappa_2^X \frac{\mu_X^2}{T_c(0)^2} - \kappa_4^X \frac{\mu_X^4}{T_c(0)^4}$$

• For strangess neutral system, continuum results available! $\kappa_2^B = 0.012(4)$, $\kappa_4^B \sim 0$ with Taylor expansions and HISQ fermions. [HotQCD collaboration, 1812.08235]



Sayantan Sharma

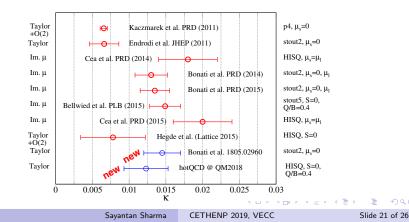
CETHENP 2019, VECC

Slide 21 of 26

Curvature of the chiral crossover line

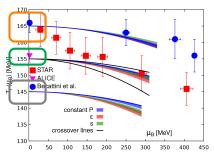
•
$$\frac{T_c(\mu_X)}{T_c(0)} = 1 - \kappa_2^X \frac{\mu_X^2}{T_c(0)^2} - \kappa_4^X \frac{\mu_X^4}{T_c(0)^4}$$

- Consistent with imaginary chemical potential method and stout fermions $\kappa^B_2=0.0135(20)$ [C. Bonati et. al., 1805.02960]
- removes earlier tension between two methods! [courtesy M. D'Elia Quark Matter 18]



Curvature of freeze-out line vs chiral crossover line

- Different LCP's agree within 2 MeV for $\mu_B/T \leq 2$ for 3 initial choices of T_0 .
- For lines P = const, the entropy density changes by 15% → better description of LCP for viscous medium formed in heavy-ion collisions. [HotQCD collaboration, 1701.04325].



- STAR results give a steeper curvature. [arXiv:1412.0499].
- Agreement with the recent ALICE results. [arXiv:1408.6403].
- Consistent with phenomenological models. [Becattini et. al., 1605.09694].

• The Taylor series for $\chi_2^B(\mu_B)$ should diverge at the critical point.

< ∃ →

- The Taylor series for $\chi_2^B(\mu_B)$ should diverge at the critical point.
- Radius of convergence determines location of the critical point. [Gavai& Gupta, 03]

- The Taylor series for $\chi_2^B(\mu_B)$ should diverge at the critical point.
- Radius of convergence determines location of the critical point. [Gavai& Gupta, 03]
- For critical point in real μ_B all the $\chi_n^B > 0!$

- The Taylor series for $\chi_2^B(\mu_B)$ should diverge at the critical point.
- Radius of convergence determines location of the critical point. [Gavai& Gupta, 03]
- For critical point in real μ_B all the $\chi_n^B > 0!$
- Definition: $r_{2n} \equiv \sqrt{2n(2n-1)\frac{\chi^B_{2n}}{\chi^B_{2n+2}}}$.

- The Taylor series for $\chi_2^B(\mu_B)$ should diverge at the critical point.
- Radius of convergence determines location of the critical point. [Gavai& Gupta, 03]
- For critical point in real μ_B all the $\chi_n^B > 0!$
- Definition: $r_{2n} \equiv \sqrt{2n(2n-1)\frac{\chi^B_{2n}}{\chi^B_{2n+2}}}$.
- Strictly defined for $n \to \infty$. How large *n* could be on a finite lattice?

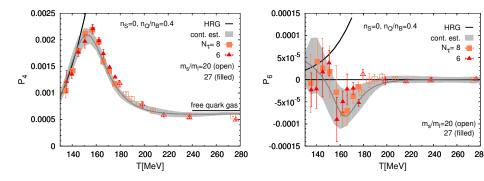
化压力 化压力

- The Taylor series for $\chi^B_2(\mu_B)$ should diverge at the critical point.
- Radius of convergence determines location of the critical point. [Gavai& Gupta, 03]
- For critical point in real μ_B all the $\chi_n^B > 0!$

• Definition:
$$r_{2n} \equiv \sqrt{2n(2n-1)\frac{\chi^B_{2n}}{\chi^B_{2n+2}}}$$
.

- Strictly defined for $n \to \infty$. How large *n* could be on a finite lattice?
- Signal to noise ratio deteriorates for higher order χ_n^B .

All higher order fluctuations are positive for T \sim 140 MeV.



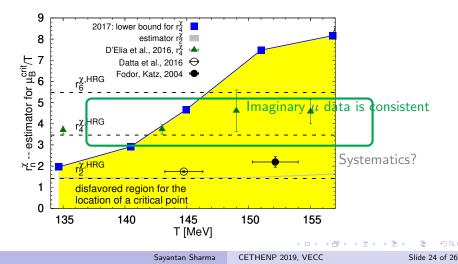
Sayantan Sharma CETHENP 2019, VECC

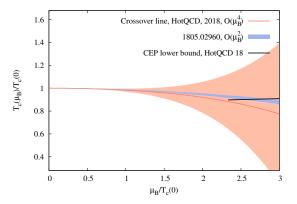
Slide 24 of 26

• Current bound for CEP: $\mu_B/T > 3$ for $142 \le T \le 150$ MeV

[HotQCD coll., 1701.04325, update 2018].

• Ultimately all estimates will agree in the continuum limit!



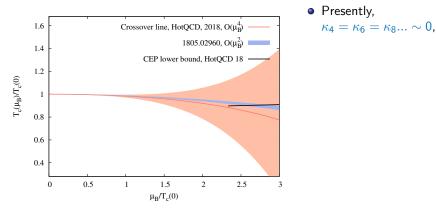


Steeper curvature would imply slow convergence of r_n with order n

Sayantan Sharma CETHEN

CETHENP 2019, VECC

Slide 25 of 26

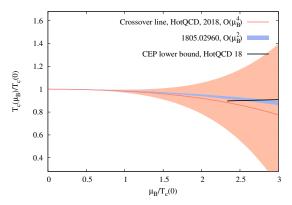


Steeper curvature would imply slow convergence of r_n with order n

Sayantan Sharma CETHENI

CETHENP 2019, VECC

Slide 25 of 26

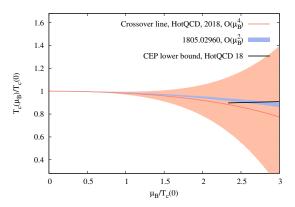


• Presently,

 $\kappa_4 = \kappa_6 = \kappa_8 \dots \sim 0$,

• radius of curvature estimates tell us $T_{CEP} \sim 0.92 T_c(0)$ and $\mu_B/T_{CEP} > 3$.

Steeper curvature would imply slow convergence of r_n with order n



• Presently,

 $\kappa_4 = \kappa_6 = \kappa_8 \dots \sim 0$,

- radius of curvature estimates tell us $T_{CEP} \sim 0.92 T_c(0)$ and $\mu_B/T_{CEP} > 3$.
- If $\kappa_4 \sim 0.1\kappa_2$, only significantly contributes when $\mu_B/T_{CEP} > 3$ so its precise determination is imp.

Steeper curvature would imply slow convergence of r_n with order n

Outlook

• Preparing for BES-II runs: LQCD EoS important for hydrodynamic modeling of QGP. For $\mu_B/T \le 2 \rightarrow \sqrt{s_{NN}} \ge 11$ GeV already under control with χ_6^B .

▲ 同 ▶ → 三 ▶

Image: Im

Outlook

- Preparing for BES-II runs: LQCD EoS important for hydrodynamic modeling of QGP. For $\mu_B/T \le 2 \rightarrow \sqrt{s_{NN}} \ge 11$ GeV already under control with χ_6^B .
- χ_8^B is important to estimate the errors on the EoS measured with the sixth order cumulants and going towards $\mu_B/T = 3$.

伺い イヨト イヨト

Outlook

- Preparing for BES-II runs: LQCD EoS important for hydrodynamic modeling of QGP. For $\mu_B/T \le 2 \rightarrow \sqrt{s_{NN}} \ge 11$ GeV already under control with χ_6^B .
- χ_8^B is important to estimate the errors on the EoS measured with the sixth order cumulants and going towards $\mu_B/T = 3$.
- Lines of constant ε, p consistent with LQCD estimates of curvature of chiral crossover line.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Preparing for BES-II runs: LQCD EoS important for hydrodynamic modeling of QGP. For $\mu_B/T \le 2 \rightarrow \sqrt{s_{NN}} \ge 11$ GeV already under control with χ_6^B .
- χ_8^B is important to estimate the errors on the EoS measured with the sixth order cumulants and going towards $\mu_B/T = 3$.
- Lines of constant ε, p consistent with LQCD estimates of curvature of chiral crossover line.
- Higher order cumulants of baryon no. will also help in bracketing the possible CEP. Recent LQCD calculations suggest $\mu_B(CEP)/T \ge 3$, $T \sim 0.9T_c$.