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o The QCD phase diagram: Latest results

© Critical-end point search from lattice
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@ The QCD phase diagram: Latest results

@ Critical-end point search from lattice
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Necessary inputs from Lattice QCD
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Necessary inputs from Lattice QCD

@ For RHIC Beam Energy
Scan-Il: Equation of
State for ug/T < 3.
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Necessary inputs from Lattice QCD

@ For RHIC Beam Energy
Scan-Il: Equation of
State for g/ T < 3.

@ Measure the curvature of
chiral crossover line.
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Lattice techniques at finite 1i5-I

@ Conventional Monte-Carlo methods suffer from sign problem at finite /..
@ Two methods presently allow to go to thermodynamic and continuum limits.

@ For the fermion determinant real and positive — no
sign-problem.
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Lattice techniques at finite 1i5-I

@ Conventional Monte-Carlo methods suffer from sign problem at finite /..

@ Two methods presently allow to go to thermodynamic and continuum limits.

@ For imaginary /i, the fermion determinant real and positive — no
sign-problem.

® Zocn(pg/T) = Zqcp(pg/ T + 2nin/3) implies Roberge-Weiss end-points at
pq/ T =(2n+1)im/3.
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@ Two methods presently allow to go to thermodynamic and continuum limits.
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@ Calculate baryon no. density at several pq/ T < im/3.
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@ Calculate baryon no. density at several pq/ T < im/3.

@ Fitting it to a polynomial in ji, analytically continue in the real-u plane.
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Lattice techniques at finite 1i5-I

@ Conventional Monte-Carlo methods suffer from sign problem at finite /..
@ Two methods presently allow to go to thermodynamic and continuum limits.

@ For the fermion determinant real and positive — no
sign-problem.

® Zocn(pg/T) = Zqcp(pg/ T + 2nin/3) implies Roberge-Weiss end-points at

@ Calculate baryon no. density at several pq/ T < im/3.
@ Fitting it to a polynomial in ji, analytically continue in the real-u plane.

@ Limited due to discontinuities at Roberge-Weiss end-points!.
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Lattice techniques at finite 1iz-Il

@ Taylor expansion of physical observables around 1 = 0 in powers of

u/T
P(us.T) _ P(O, T)+<MB)2><25(0, T) (MB)“Xf(O)+
T T* T 272 T 4!
P, P4

@ The series for Xf(ug) should diverge at the critical point. On finite
lattice \5 peaks, ratios of Taylor coefficients equal, indep. of volume
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Challenges for Taylor expansion

@ The fluctuations of conserved charges can be expressed in terms of Quark
no. susceptibilities (QNS).
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@ The fluctuations of conserved charges can be expressed in terms of Quark
no. susceptibilities (QNS).

@ QNS xj;'s can be written as derivatives of the Dirac operator.

Example:yy = [ (Tr(D;*D, — (D;1D,)?) + (Tr(D;D,))?).
x§5 = w(Tr(D;'D,D;1D,)).
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@ QNS xj;'s can be written as derivatives of the Dirac operator.
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@ Why extending to higher orders so difficult?
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no. susceptibilities (QNS).

@ QNS xj;'s can be written as derivatives of the Dirac operator.

Example:yy = [ (Tr(D;*D, — (D;1D,)?) + (Tr(D;D,))?).
x§5 = w(Tr(D;'D,D;1D,)).

@ Higher derivatives — more inversions
Inversion is the most expensive step on the lattice !
@ Why extending to higher orders so difficult?

e Matrix inversions increasing with the order
e Delicate cancellation between a large number of terms for higher order

QNS.
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Challenges for Taylor expansion

@ The fluctuations of conserved charges can be expressed in terms of Quark
no. susceptibilities (QNS).

@ QNS xj;'s can be written as derivatives of the Dirac operator.
Example:x§ = (Tr(D,'D, — (D;'D,)*) + (Tr(D;'D,))).
xi§ = 3(Tr(D;*D,D; D).

@ Higher derivatives — more inversions
Inversion is the most expensive step on the lattice !

@ Why extending to higher orders so difficult?

e Matrix inversions increasing with the order
e Delicate cancellation between a large number of terms for higher order

QNS.

@ A new method of introducing ;. developed makes it easier to access higher
order QNS.
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Our Set-up

e V = N32°, Box size: m, V/3 > 4.

o T
We use N, = 6,8,12,16 lattices for x24 and N, = 6,8 for higher order
fluctuations.

@ Input m; physical and m® = 160 MeV for T > 175 MeV and m¢ = 140
MeV for T <= 175 MeV.
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EoS in the constrained case

@ In most central heavy-ion experiments typically:

nS - 0 Y !
ng _ _np __
ng = mptm = 0.4.

@ For lower /s collisions: Need to understand baryon stopping!

@ Imposes non-trivial constraints on the variation of 15 and 1.

@ Possible to vary them by only varying 1 through
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@ Central values of P,, P already deviate from Hadron Resonance gas model
at T > 145 MeV — need to analyze the errors on Pg better.

@ Pg has characteristic structure at T > T. — remnant of the chiral
symmetry due to the light quarks. Effects of Us(1) anomaly?

@ Essentially non-perturbative — cannot be predicted within Hard Thermal
Loop perturbation theory.
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EoS in the constrained case

@ The EoS is well under control for g/ T ~ 2.5 with xe.
Full parametric dependence for Ng on T available in arxiv: 1701.04325.
Expanding to i/ T = 3, need to calculate ys!
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Summary for the EoS

@ Continuum estimates from two different fermion discretization agree for

[Bielefeld-BNL-CCNU collaboration, 1701.04325, Borsanyi et. al, 1606.07494].

@ Steeper EoS for RHIC energies compared to LHC energy.
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Baryon number density

@ Y contribution is 30-times larger than in
pressure.
N(us) _ 1B g 1 p\* B
T I 7X2 (0) + 2 (?) X4 (0)
= 1 rus\® g
: o (F) o
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@ Strongly sensitive to the singular part of x&.
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Do we understand the degrees of freedom around 7.7

@ For a strongly interacting medium a quasi-particle description may
not exist.
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not exist.

o Initially believed that thermodynamic properties of QCD can be very
well described by a non-interacting gas of hadrons-resonances.
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Do we understand the degrees of freedom around 7.7

@ For a strongly interacting medium a quasi-particle description may
not exist.

o Initially believed that thermodynamic properties of QCD can be very
well described by a non-interacting gas of hadrons-resonances.

o With very precise lattice data we now know HRG description breaks
down much below T_!.
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Why should naive HRG description break down?

@ There may be many more baryon states and resonances than currently

measured especially in the strangeness and charm sectors.
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Why should naive HRG description break down?

@ All baryon channels do not have resonant interactions.
@ In-medium modification of baryon masses ?
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Why should naive HRG description break down?

@ Thermal width of the resonances?
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Can T < T, be described by Hadron Resonance Gas?

@ Higher order fluctuations of conserved charges are more sensitive to the

departure from HRG.

@ Repulsive baryon interactions?

@ Lattice data for higher order baryon no. fluc. are precise enough to

distinguish between diff. scenarios —
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Can T < T, be described

by Hadron Resonance Gas?
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@ Including Van der Waal's interaction for baryons+non-interacting
mesons+resonances, new versions of HRG has been studied — significant
deviation from non-interacting HRG.

@ Lattice data can constrain such models strongly!
Currently none of these models are perfect to describe QCD at freezeout.
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Cross-correlations

@ Off-diagonal fluctuations are more sensitive to deviation from HRG and
baryon interactions.
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Cross-correlations

@ Off-diagonal fluctuations are more sensitive to deviation from HRG and
baryon interactions.
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@ 2 /x3 shows ~ 15% deviation between 155 and 165 MeV. Analysis with
ALICE al consistent with lattice at 7. ~ 155 MeV.
Including ¥* — NK will make the ratio lower!
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Cross-correlations

@ Off-diagonal fluctuations are more sensitive to deviation from HRG and
baryon interactions.
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@ 2 /x3 shows ~ 15% deviation between 155 and 165 MeV. Analysis with
ALICE [ A Andronic et al., 16] consistent with lattice at 7. ~ 155 MeV.
Including ¥* — NK will make the ratio lower!

@ Similar results at higher g would be interesting! [ A chatterjee et 2l STAR

collaboration, 2019]
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How perturbative is the QGP medium at high 77

@ Screening masses show how perturbative is the medium — less IR sensitive,
more perturbative than gluonic observables.

1/T .
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How perturbative is the QGP medium at high 77

@ Screening masses show how perturbative is the medium — less IR sensitive,
more perturbative than gluonic observables.

C(z) =

1/T .
/ drdxdy(O'(x,y,z,7)0(0,0,0,0)) ~ e ™M°% 7z — oo,
0

@ Vector like excitations O = 1/_17“1/) reach the perturbative estimate quickly
2
than pseudo-scalar excitations M/ T = 2 + % (Eo + 1/2) HotQc colt, 2019]
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0 The QCD phase diagram: Latest results

@ Critical-end point search from lattice
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Curvature of the chiral crossover line

@ Since m, g << Agcp the SU.(2) x SUg(2) is a near exact symmetry of

2 + 1 flavor QCD.

@ Though not strictly a phase transition, however all chiral observables show
observable changes at a certain temperature. It thus makes sense to talk

about a

precise TP¢ =156.5 £ 1.5.
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Curvature of the chiral crossover line

2 4
1 X B X ik
T.0) = 1~ R 7 op ~ K4 Ty

@ For strangess neutral system, continuum results available!
k5 =0.012(4) , k§ ~ 0 with Taylor expansions and HISQ fermions.
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Curvature of the chiral crossover line

2 4
— X _Px X _Px
=1 A% T.(0)2 Ry T-(0)?

Te(px)

M A (0)

@ Consistent with imaginary chemical potential method and stout fermions
x5 = 0.0135(20)
@ removes earlier tension between two methods!
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Curvature of freeze-out line vs chiral crossover line

o Different LCP's agree within 2 MeV for g/ T < 2 for 3 initial choices of Tp.

@ For lines P = , the entropy density changes by 15% — better
description of LCP for viscous medium formed in heavy-ion collisions.

HM + @ STAR results give a steeper curvature.

1s @ Agreement with the recent ALICE
= STAR
= 150/m \CE results .

/@ Bepattini et al. . . .
145 @ Consistent with phenomenological
140}
constamF‘s : modelsl
135} s
crossover lines — Hs [Me\/]
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Critical-end point search from Lattice

@ The Taylor series for y5(115) should diverge at the critical point.
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Critical-end point search from Lattice

@ The Taylor series for y5(115) should diverge at the critical point.

@ Radius of convergence determines location of the critical point.

[Gavai& Gupta, 03]

@ For critical point in real g all the Xf > 0!
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Critical-end point search from Lattice

@ The Taylor series for y5(115) should diverge at the critical point.

@ Radius of convergence determines location of the critical point.

[Gavai& Gupta, 03]

@ For critical point in real g all the Xf > 0!

@ Definition: ), = \/2n(2n - 1)>§i.

X2n+2
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Critical-end point search from Lattice

The Taylor series for x5 (15) should diverge at the critical point.

@ Radius of convergence determines location of the critical point.

[Gavai& Gupta, 03]

For critical point in real pg all the x2 > 0!

@ Definition: ), = \/2n(2n - 1)%—5".

X2n+2

Strictly defined for n — oo. How large n could be on a finite lattice?
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Critical-end point search from Lattice

The Taylor series for x5 (15) should diverge at the critical point.
@ Radius of convergence determines location of the critical point.

[Gavai& Gupta, 03]

For critical point in real pg all the x2 > 0!

S _ - x5,
Definition: r, = (/2n(2n — 1)

X2n+2

Strictly defined for n — oo. How large n could be on a finite lattice?

Signal to noise ratio deteriorates for higher order x2.
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Critical-end point search from Lattice
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Critical-end point search from Lattice

@ Current bound for CEP: g/ T > 3 for 142 < T < 150 MeV

@ Ultimately all estimates will agree in the continuum limit!

2017: lower bound for rk
F estimator r§
D’Elia et al., 2016, r§
Datta et al., 2016
Fodor, Katz, 2004

[ JON N |

X, HRG
s

ata is ¢onsistent

% —- estimator for u§"/T
N WA OO N 00 ©

1Systematics?

1 b disfavored region for the ]
0 Lo location of a critical point ‘ ‘
135 140 145 150 155
T [MeV]
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Critical end-point and Chiral Crossover line: current status

1.6 - Crossover line, HotQCD, 2018, O(p.ﬁ) N
Ll 1805.02960, O(u3)
CEP lower bound, HotQCD 18 ——
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S
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)
3 —
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BE/T(0)

Steeper curvature would imply slow convergence of r, with order n
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Critical end-point and Chiral Crossover line: current status

@ Presently,
16 Crossover line, HotQCD, 2018, O(p.ﬁ) b K4 = Kg = Kg... ~ O,
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Critical end-point and Chiral Crossover line: current status

‘ ‘ ‘ ‘ @ Presently,
1.6 - Crossover line, HotQCD, 2018, O(p.ﬁ) 7 K4 = Kg =— Kg... ~ 0,

2, .
180502960, Olhp) @ radius of curvature

CEP lower bound, HotQCD 18 —— estimates teII us

S T(_‘E,D ~ 0.92 TC(O) and
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£
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ug/T(0)

Steeper curvature would imply slow convergence of r, with order n
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Critical end-point and Chiral Crossover line: current status
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Crossover line, HotQCD, 2018, O(p.ﬁ)
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Presently,
R4 = Rg = KRg... ™~ 0,
radius of curvature

estimates tell us
T(_‘E,D ~ 0.92 TC(O) and

If k4 ~ 0.1k, only
significantly contributes
when g/ Tcep > 3 so its
precise determination is
imp.

Steeper curvature would imply slow convergence of r, with order n
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Outlook

@ Preparing for BES-II runs: LQCD EoS important for hydrodynamic modeling
of QGP. For 115/ T <2 — \/syy > 11 GeV already under control with 2.
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Outlook

@ Preparing for BES-II runs: LQCD EoS important for hydrodynamic modeling
of QGP. For 115/ T <2 — \/syy > 11 GeV already under control with 2.

° ng is important to estimate the errors on the EoS measured with the sixth
order cumulants and going towards g/ T = 3.
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° ng is important to estimate the errors on the EoS measured with the sixth
order cumulants and going towards g/ T = 3.

@ Lines of constant ¢, p consistent with LQCD estimates of curvature of chiral
crossover line.
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Outlook

@ Preparing for BES-II runs: LQCD EoS important for hydrodynamic modeling
of QGP. For 115/ T <2 — \/syy > 11 GeV already under control with 2.

@ \ is important to estimate the errors on the EoS measured with the sixth

order cumulants and going towards g/ T = 3.

@ Lines of constant ¢, p consistent with LQCD estimates of curvature of chiral
crossover line.

@ Higher order cumulants of baryon no. will also help in bracketing the possible
CEP. Recent LQCD calculations suggest 15( /T>3, T~09T..
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