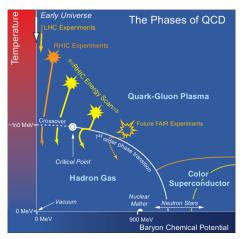
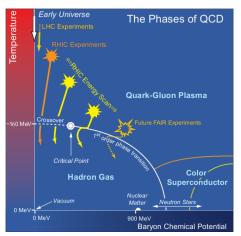
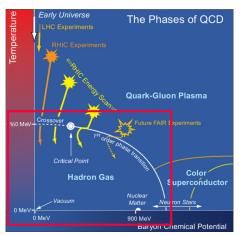

Extraction of chemical freeze-out parameters considering Baryon charge conservation

Deeptak Biswas

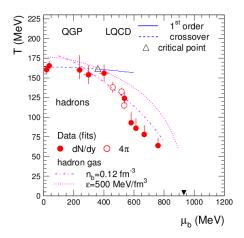
Department of Physics, Bose Institute, Kolkata, India


Contemporary and Emerging Topics in High Energy Nuclear Physics 2019

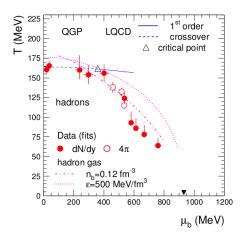

• Strongly interacting matter goes through phase transition at extreme conditions.


- Strongly interacting matter goes through phase transition at extreme conditions.
- To understand this transition we need to scale the phase diagram and its observables like energy and matter(baryon) density.

- Strongly interacting matter goes through phase transition at extreme conditions.
- To understand this transition we need to scale the phase diagram and its observables like energy and matter(baryon) density.
- Temperature and chemical potentials are the respective parameters.
- How to scan these T and μ_B ???

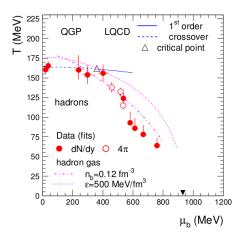


- Strongly interacting matter goes through phase transition at extreme conditions.
- To understand this transition we need to scale the phase diagram and its observables like energy and matter(baryon) density.
- Temperature and chemical potentials are the respective parameters.
- How to scan these T and μ_B ???

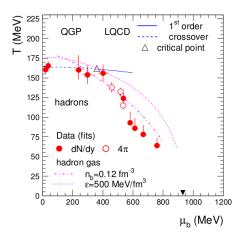


Let's collide nuclei and collect the data.

- A strongly interacting system in equilibrium can be described by $T, \mu_Q, \mu_B, \mu_S.$
- At chemical freeze-out the inelastic collision stops



• A strongly interacting system in equilibrium can be described by T, μ_Q, μ_B, μ_S .


• At chemical freeze-out the inelastic collision stops, yields and chemical composition get fixed.

- A strongly interacting system in equilibrium can be described by $T, \mu_Q, \mu_B, \mu_S.$
- At chemical freeze-out the inelastic collision stops, yields and chemical composition get fixed.
- Fitting data with thermodynamical description helps to get parameters'(T, μ) information.

- A strongly interacting system in equilibrium can be described by $T, \mu_Q, \mu_B, \mu_S.$
- At chemical freeze-out the inelastic collision stops, yields and chemical composition get fixed.
- Fitting data with thermodynamical description helps to get parameters'(T, μ) information.

These T and μ_B are guideline to locate phase transition.

Parameters and model for equilibrium

- \bullet One can model HRG like picture with ${\cal T}$ and $\mu{\rm 's}$ to understand CFO surface.
- Thermal density of *i*'th Hadron can be given as,

$$n_i = \frac{g_i}{(2\pi)^3} \int \frac{d^3p}{\exp[(E_i - \mu_i)/T] \pm 1}.$$

• $\mu_i = B_i \mu_B + S_i \mu_S + Q_i \mu_Q$ is total chemical potential, g_i is the degeneracy factor.

• Decay of parents to daughter particles has been included via,

$$\begin{array}{ll} n_i^{Tot} &=& n_i(T, \mu_B, \mu_Q, \mu_S) + \\ \sum_j & n_j(T, \mu_B, \mu_Q, \mu_S) \times Branching \ Ratio(j \rightarrow i) \end{array}$$

Connection with observable

- We observe dN/dy in experiments.
- One can write dN = ndV
- Detected i'th primary hadron's rapidity density near mid-rapidity,

$$\frac{dN_i}{dy} = \frac{dV}{dy}n_i(T,\mu_Q,\mu_B,\mu_S)$$

• Information of the volume can be avoided by constructing ratios out of yields i.e

$$\frac{dN_i/dy}{dN_j/dy} = \frac{n_i}{n_j}$$

Extracting Parameter From Data

- We need four independent equations to extract these four thermal parameters.
- $\mu_{\textit{Q}}$ and $\mu_{\textit{S}}$ can be determined by imposing the constraints,

$$\frac{\sum_{i} n_i(T, \mu_B, \mu_S, \mu_Q) B_i}{\sum_{i} n_i(T, \mu_B, \mu_S, \mu_Q) Q_i} = r$$

$$\sum_{i} n_i(T, \mu_B, \mu_S, \mu_Q) S_i = 0$$

 Above equations contain information of the incident nuclei. For Au-Au and Pb-Pb, $r\sim 2.50$.

Extracting Parameter From Data

- To fit temperature T and the baryon chemical potential μ_B one can perform contemporary χ^2 minimization method with multiple ratios.
- Several standard codes are available like THERMUS, SHARE.
- We observed that extracted parameters were dependent on the ratios we choose and systematics of the analysis. *arxiv-1911.04828, talk by Sumana*

- There is significant error in extracted papramter set. 15 MeV in case of T, larger for μ_B .
- Inclusion of higher mass particles in fitting results into higher value of T.

- There is significant error in extracted papramter set. 15 MeV in case of T, larger for μ_B .
- Inclusion of higher mass particles in fitting results into higher value of T.
- Effects chemical potentials also.

- There is significant error in extracted papramter set. 15 MeV in case of T, larger for μ_B .
- Inclusion of higher mass particles in fitting results into higher value of T.
- Effects chemical potentials also.
- But particle ratios are suitably reproduced inspite of these uncertainities.

- There is significant error in extracted papramter set. 15 MeV in case of T, larger for μ_B .
- Inclusion of higher mass particles in fitting results into higher value of T.
- Effects chemical potentials also.
- But particle ratios are suitably reproduced inspite of these uncertainities.
- Individual yields are not conserved under strong interaction. One should be careful about using ratios for fitting.

- There is significant error in extracted papramter set. 15 MeV in case of T, larger for μ_B .
- Inclusion of higher mass particles in fitting results into higher value of T.
- Effects chemical potentials also.
- But particle ratios are suitably reproduced inspite of these uncertainities.
- Individual yields are not conserved under strong interaction. One should be careful about using ratios for fitting.
- One can use additional parametrs

- There is significant error in extracted papramter set. 15 MeV in case of T, larger for μ_B .
- Inclusion of higher mass particles in fitting results into higher value of T.
- Effects chemical potentials also.
- But particle ratios are suitably reproduced inspite of these uncertainities.
- Individual yields are not conserved under strong interaction. One should be careful about using ratios for fitting.
- One can use additional parametrs, different freeze-out description depending on flavour etc. for better accuracy.

- There is significant error in extracted papramter set. 15 MeV in case of T, larger for μ_B .
- Inclusion of higher mass particles in fitting results into higher value of T.
- Effects chemical potentials also.
- But particle ratios are suitably reproduced inspite of these uncertainities.
- Individual yields are not conserved under strong interaction. One should be careful about using ratios for fitting.
- One can use additional parametrs, different freeze-out description depending on flavour etc. for better accuracy.
- Rather than incorporating numerous parameters, here we try to use minimum number of parameters as a most general approach.

Can there be an alternate way to extract thermodynamic parameters

Can there be an alternate way to extract thermodynamic parameters other than χ^2 ?

- Strong interaction conserves B, S and Q.
- Net charges are conserved, *not the individual yields*.
- So we tried to construct ratio of Mean Net baryon charges to total baryon number with all these detected hadrons data.

- Strong interaction conserves B, S and Q.
- Net charges are conserved, *not the individual yields*.
- So we tried to construct ratio of Mean Net baryon charges to total baryon number with all these detected hadrons data. $\langle B \rangle \langle \bar{B} \rangle$

- Strong interaction conserves B, S and Q.
- Net charges are conserved, *not the individual yields*.
- So we tried to construct ratio of Mean Net baryon charges to total baryon number with all these detected hadrons data. $\langle B \rangle \langle \bar{B} \rangle$
- In this way one can maximally utilize yield data of all baryons

- Strong interaction conserves B, S and Q.
- Net charges are conserved, *not the individual yields*.
- So we tried to construct ratio of Mean Net baryon charges to total baryon number with all these detected hadrons data. $\langle B \rangle \langle \bar{B} \rangle$
- In this way one can maximally utilize yield data of all baryons and No Bias will be induced.

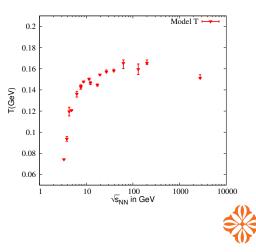
$$\frac{\sum_{i} B_{i} n_{i}}{\sum_{i} |B_{i}| n_{i}} = \frac{\sum_{i} B_{i} \frac{dN_{i}}{dY}}{\sum_{i} |B_{i}| \frac{dN_{i}}{dY}}$$

continuing...

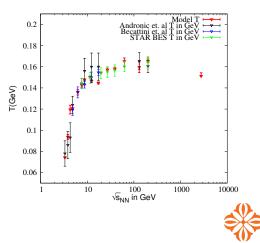
- We need one more equation to close our system of equations.
- To extract T, we look at the net baryon to total particles ratio.

$$\frac{\sum_{i} B_{i} \frac{dN_{i}}{dY}}{\sum_{i} \frac{dN_{i}}{dY}} = \frac{\sum_{i} B_{i} n_{i}^{Tot}}{\sum_{i} n_{i}^{Tot}}$$

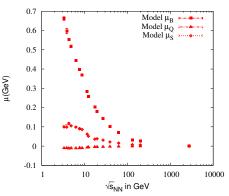
- These two equations have been constructed only out of detected hadrons. *PhysRevD 100 (5), 054037*
- To solve \implies Two new equations + Two constraints.


Dataset Used

- AGS, SPS, RHIC and LHC (2.76 TeV) data have been used.
- Study has been performed for mid-rapidity data of most central collision of these \sqrt{s} .
- We have used yield of all available mesons and baryons $(\pi^{\pm}, k^{\pm}$ and $p, \bar{p}, \Lambda, \bar{\Lambda}, \Xi^{\pm})$ for fitting.
- We have not used Ω^{\pm} yield, it is not available for most of the \sqrt{s} .
- *Feed-down corrections* are taken care of, according to the corresponding experiment.
- Error has been calculated using extremum values of data.


Variation of T with \sqrt{s}

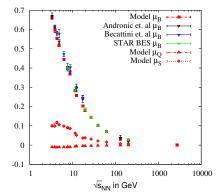
- There is trend of saturation after \sqrt{s} 19.6*AGeV*.
- It approaches the flat region of the proposed phase diagram of hadron to QGP transition near $\mu_B = 0$.


Variation of T with \sqrt{s}

- There is trend of saturation after \sqrt{s} 19.6*AGeV*.
- It approaches the flat region of the proposed phase diagram of hadron to QGP transition near $\mu_B = 0$.
- We have compared our extracted *T* with *Andronic et.al* and BES.

Variation of μ with \sqrt{s}

- μ_B increases due to higher rate of baryon stopping in lower collision energy.
- The difference between μ 's decrease with increaseing \sqrt{s} and converges to zero at very high \sqrt{s} .
- At low \sqrt{s} , μ_Q becomes negative though both μ_B and μ_S remain positive for all the values of \sqrt{s} .



μ(GeV)

Variation of μ with \sqrt{s}

- μ_B increases due to higher rate of baryon stopping in lower collision energy.
- The difference between μ 's decrease with increaseing \sqrt{s} and converges to zero at very high \sqrt{s} .
- At low \sqrt{s} , μ_Q becomes negative though both μ_B and μ_S remain positive for all the values of \sqrt{s} .

Results

Pion, kaon to pion ratio and proton to pion

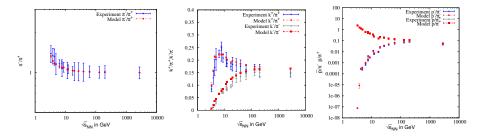


Figure: π^-/π^+ , k^\pm/π^\pm and p/π

Results

Strange baryon to non-strange baryon ratio

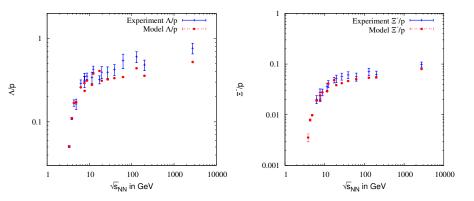


Figure: Variation of Λ/p and Ξ^-/p with \sqrt{s}

Deeptak Biswas (Bose Institute)

CETHENP 2019

19 / 23

Results

Predicted ratios

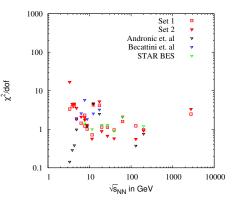
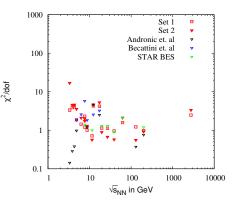



Figure: Variation of ϕ/π^+ , Ω^-/p and Ω^+/p

Do we have a better χ^2 per degrees of freedom ?

- $\chi^2/d.o.f$ are better at RHIC and BES and worse at *AGS* energy range.
- Lack of hyperon data at these \sqrt{S} plays a significant role. Only Λ data are available.
- Though there is good agreements between data and model predictions, $\chi^2/d.o.f$ is quite large.



21 / 23

Do we have a better χ^2 per degrees of freedom ?

- $\chi^2/d.o.f$ are better at RHIC and BES and worse at *AGS* energy range.
- Lack of hyperon data at these \sqrt{S} plays a significant role. Only Λ data are available.
- Though there is good agreements between data and model predictions, $\chi^2/d.o.f$ is quite large.

It is not a minimization routine, χ^2 can be a misleading measure!

Summary

- A new mechanism for freeze out parameter extraction has been proposed depending on net baryon charge.
- The extracted parameters have suitably reproduced various ratios.
- Chemical equilibrium at freeze-out under the umbrella of various charges.
- Parameters value are in good agreement with that of standard literature.
- Ratios are quite independent prediction as our process does not involve any individual particle ratios like one uses in case of χ^2 minimization.
- Precise data at lower \sqrt{S} can improve our prediction.

Summary

- A new mechanism for freeze out parameter extraction has been proposed depending on net baryon charge.
- The extracted parameters have suitably reproduced various ratios.
- Chemical equilibrium at freeze-out under the umbrella of various charges.
- Parameters value are in good agreement with that of standard literature.
- Ratios are quite independent prediction as our process does not involve any individual particle ratios like one uses in case of χ^2 minimization.
- Precise data at lower \sqrt{S} can improve our prediction.

This method can be a good alternative to investigate chemical equilibrium at freeze-out in Heavy-Ion collision.

Collaborators

Sumana Bhattacharyya Sanjay K. Ghosh Rajarshi Ray Pracheta Singha

