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Chemical freeze out:

Scanning T and µB

• Strongly interacting matter goes
through phase transition at extreme
conditions.

• To understand this transition we
need to scale the phase diagram and
its observables like energy and mat-
ter(baryon) density.

• Temperature and chemical poten-
tials are the respective parameters.

• How to scan these T and µB ???
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Chemical freeze out:

Scanning T and µB

• Strongly interacting matter goes
through phase transition at extreme
conditions.

• To understand this transition we
need to scale the phase diagram and
its observables like energy and mat-
ter(baryon) density.

• Temperature and chemical poten-
tials are the respective parameters.

• How to scan these T and µB ???

Let’s collide nuclei and collect the data.
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Chemical freeze out:

Data comes after freeze-out

• A strongly interacting system in
equilibrium can be described by
T , µQ , µB , µS .

• At chemical freeze-out the inelas-
tic collision stops

, yields and chemical
composition get fixed.

• Fitting data with thermody-
namical description helps to get
parameters’(T , µ) information.

These T and µB are guideline to locate phase transition.
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Modelling The Equilibrium

Parameters and model for equilibrium

• One can model HRG like picture with T and µ’s to understand CFO
surface.
• Thermal density of i ’th Hadron can be given as,

ni =
gi

(2π)3

∫
d3p

exp[(Ei − µi )/T ]± 1
.

• µi = BiµB +SiµS +QiµQ is total chemical potential, gi is the degeneracy
factor.
• Decay of parents to daughter particles has been included via,

nToti = ni (T , µB , µQ , µS) +∑
j nj(T , µB , µQ , µS)× Branching Ratio(j → i)
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Fitting Experimental Data

Connection with observable

• We observe dN/dy in experiments.
• One can write dN = ndV
• Detected i’th primary hadron’s rapidity density near mid-rapidity,

dNi

dy
=

dV

dy
ni (T , µQ , µB , µS)

• Information of the volume can be avoided by constructing ratios out of
yields i.e

dNi/dy

dNj/dy
=

ni
nj
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Fitting Experimental Data

Extracting Parameter From Data

• We need four independent equations to extract these four thermal param-
eters.
• µQ and µS can be determined by imposing the constraints,∑

i ni (T , µB , µS , µQ)Bi∑
i ni (T , µB , µS , µQ)Qi

= r

∑
i

ni (T , µB , µS , µQ)Si = 0

• Above equations contain information of the incident nuclei.
For Au-Au and Pb-Pb, r ∼ 2.50 .
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Fitting Experimental Data

Extracting Parameter From Data

• To fit temperature T and the baryon chemical potential µB one can
perform contemporary χ2 minimization method with multiple ratios.

• Several standard codes are available like THERMUS , SHARE .

• We observed that extracted parameters were dependent on the ratios we
choose and systematics of the analysis. arxiv-1911.04828, talk by Sumana
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Fitting Experimental Data

Uncertainities in χ2 minimization approach

• There is significant error in extracted papramter set. 15 MeV in case of
T , larger for µB .
• Inclusion of higher mass particles in fitting results into higher value of T .

• Effects chemical potentials also.
• But particle ratios are suitably reproduced inspite of these uncertainities.
• Individual yields are not conserved under strong interaction. One should
be careful about using ratios for fitting.
• One can use additional parametrs, different freeze-out description depend-
ing on flavour etc. for better accuracy.
• Rather than incorporating numerous parameters, here we try to use min-
imum number of parameters as a most general approach.

Deeptak Biswas (Bose Institute) CETHENP 2019 9 / 23



Fitting Experimental Data

Uncertainities in χ2 minimization approach

• There is significant error in extracted papramter set. 15 MeV in case of
T , larger for µB .
• Inclusion of higher mass particles in fitting results into higher value of T .
• Effects chemical potentials also.

• But particle ratios are suitably reproduced inspite of these uncertainities.
• Individual yields are not conserved under strong interaction. One should
be careful about using ratios for fitting.
• One can use additional parametrs, different freeze-out description depend-
ing on flavour etc. for better accuracy.
• Rather than incorporating numerous parameters, here we try to use min-
imum number of parameters as a most general approach.

Deeptak Biswas (Bose Institute) CETHENP 2019 9 / 23



Fitting Experimental Data

Uncertainities in χ2 minimization approach

• There is significant error in extracted papramter set. 15 MeV in case of
T , larger for µB .
• Inclusion of higher mass particles in fitting results into higher value of T .
• Effects chemical potentials also.
• But particle ratios are suitably reproduced inspite of these uncertainities.

• Individual yields are not conserved under strong interaction. One should
be careful about using ratios for fitting.
• One can use additional parametrs, different freeze-out description depend-
ing on flavour etc. for better accuracy.
• Rather than incorporating numerous parameters, here we try to use min-
imum number of parameters as a most general approach.

Deeptak Biswas (Bose Institute) CETHENP 2019 9 / 23



Fitting Experimental Data

Uncertainities in χ2 minimization approach

• There is significant error in extracted papramter set. 15 MeV in case of
T , larger for µB .
• Inclusion of higher mass particles in fitting results into higher value of T .
• Effects chemical potentials also.
• But particle ratios are suitably reproduced inspite of these uncertainities.
• Individual yields are not conserved under strong interaction. One should
be careful about using ratios for fitting.

• One can use additional parametrs, different freeze-out description depend-
ing on flavour etc. for better accuracy.
• Rather than incorporating numerous parameters, here we try to use min-
imum number of parameters as a most general approach.

Deeptak Biswas (Bose Institute) CETHENP 2019 9 / 23



Fitting Experimental Data

Uncertainities in χ2 minimization approach

• There is significant error in extracted papramter set. 15 MeV in case of
T , larger for µB .
• Inclusion of higher mass particles in fitting results into higher value of T .
• Effects chemical potentials also.
• But particle ratios are suitably reproduced inspite of these uncertainities.
• Individual yields are not conserved under strong interaction. One should
be careful about using ratios for fitting.
• One can use additional parametrs

, different freeze-out description depend-
ing on flavour etc. for better accuracy.
• Rather than incorporating numerous parameters, here we try to use min-
imum number of parameters as a most general approach.

Deeptak Biswas (Bose Institute) CETHENP 2019 9 / 23



Fitting Experimental Data

Uncertainities in χ2 minimization approach

• There is significant error in extracted papramter set. 15 MeV in case of
T , larger for µB .
• Inclusion of higher mass particles in fitting results into higher value of T .
• Effects chemical potentials also.
• But particle ratios are suitably reproduced inspite of these uncertainities.
• Individual yields are not conserved under strong interaction. One should
be careful about using ratios for fitting.
• One can use additional parametrs, different freeze-out description depend-
ing on flavour etc. for better accuracy.

• Rather than incorporating numerous parameters, here we try to use min-
imum number of parameters as a most general approach.

Deeptak Biswas (Bose Institute) CETHENP 2019 9 / 23



Fitting Experimental Data

Uncertainities in χ2 minimization approach

• There is significant error in extracted papramter set. 15 MeV in case of
T , larger for µB .
• Inclusion of higher mass particles in fitting results into higher value of T .
• Effects chemical potentials also.
• But particle ratios are suitably reproduced inspite of these uncertainities.
• Individual yields are not conserved under strong interaction. One should
be careful about using ratios for fitting.
• One can use additional parametrs, different freeze-out description depend-
ing on flavour etc. for better accuracy.
• Rather than incorporating numerous parameters, here we try to use min-
imum number of parameters as a most general approach.

Deeptak Biswas (Bose Institute) CETHENP 2019 9 / 23



Fitting Experimental Data

Can there be an alternate way to extract thermodynamic
parameters

other than χ2 ?
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Fitting Experimental Data

Let the conserved charges guide us

• Strong interaction conserves B,S and Q.
• Net charges are conserved, not the individual yields.
• So we tried to construct ratio of Mean Net baryon charges to total baryon
number with all these detected hadrons data.

〈B〉 − 〈B̄〉
• In this way one can maximally utilize yield data of all baryons and No Bias
will be induced.
• ∑

i Bini∑
i | Bi | ni

=

∑
i Bi

dNi
dY∑

i | Bi | dNi
dY
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Equation Used For Fitting

continuing...

• We need one more equation to close our system of equations.
• To extract T , we look at the net baryon to total particles ratio.

∑
i Bi

dNi
dY∑

i
dNi
dY

=

∑
i Bin

Tot
i∑

i n
Tot
i

• These two equations have been constructed only out of detected hadrons.
PhysRevD 100 (5), 054037

• To solve =⇒ Two new equations + Two constraints.
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Equation Used For Fitting

Dataset Used

• AGS, SPS, RHIC and LHC (2.76 TeV) data have been used.
• Study has been performed for mid-rapidity data of most central collision
of these

√
s.

• We have used yield of all available mesons and baryons (π±, k± and
p, p̄,Λ, Λ̄,Ξ±) for fitting.
• We have not used Ω± yield, it is not available for most of the

√
s.

• Feed-down corrections are taken care of, according to the corresponding
experiment.
• Error has been calculated using extremum values of data.
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Results

Variation of T with
√
s

• There is trend of saturation
after

√
s 19.6AGeV .

• It approaches the flat region
of the proposed phase diagram
of hadron to QGP transition
near µB = 0.
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Variation of T with
√
s

• There is trend of saturation
after

√
s 19.6AGeV .

• It approaches the flat region
of the proposed phase diagram
of hadron to QGP transition
near µB = 0.
• We have compared our ex-
tracted T with Andronic et.al
and BES.
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Results

Variation of µ with
√
s

• µB increases due to higher
rate of baryon stopping in
lower collision energy.
• The difference between µ’s
decrease with increaseing

√
s

and converges to zero at very
high

√
s.

• At low
√
s, µQ becomes neg-

ative though both µB and µS
remain positive for all the val-
ues of

√
s.
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Results

Pion, kaon to pion ratio and proton to pion
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Results

Strange baryon to non-strange baryon ratio
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Results

Predicted ratios
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Results

Do we have a better χ2 per degrees of freedom ?

• χ2/d .o.f are better at RHIC
and BES and worse at AGS
energy range.
• Lack of hyperon data at
these

√
S plays a significant

role. Only Λ data are avail-
able.
• Though there is good
agreements between data and
model predictions, χ2/d .o.f is
quite large.
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It is not a minimization routine, χ2 can be a misleading measure!
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Summary

Summary

• A new mechanism for freeze out parameter extraction has been proposed
depending on net baryon charge.
• The extracted parameters have suitably reproduced various ratios.
• Chemical equilibrium at freeze-out under the umbrella of various charges.
• Parameters value are in good agreement with that of standard literature.
• Ratios are quite independent prediction as our process does not involve
any individual particle ratios like one uses in case of χ2 minimization.
• Precise data at lower

√
S can improve our prediction.

This method can be a good alternative to investigate chemical equilibrium
at freeze-out in Heavy-Ion collision.
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Summary
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