
 ELECTRICAL AND HALL CONDUCTIVITY OF QUARK GLUON PLASMA 
                                        
                                        arXiv:1907.05298  
                       

                                 Ranjita K Mohapatra 
                                   IIT Bombay 
 
          (Collaborators: Arpan Das and Hiranmaya Mishra) 



                                                 OUTLINE 
 
 
 
 
1.  Motivation 

2.  Boltzmann kinetic equation 

3. Quasi particle model for QGP 
 
4. Results 

5. Conclusion 



                                       Motivation 

•  Huge magnetic field ~ mπ
2 (RHIC) and ~ 10 mπ

2 (LHC) is produced 
due to the initial overlap of two nuclei. 

•  This initial magnetic field decays rapidly in the absence of 
conducting medium.  

•  This magnetic field may survive in QGP phase due to induced 
currents. 

•  The magnetic field  may be as large as maximum magnetic field 
produced. 

 
•  This is important to estimate the electrical and Hall conductivity of 
     QGP in presence of magnetic field.        



                             Boltzmann Kinetic Equation 
  
•  f(x,p,t): Single particle phase space distribution function. 
 

•  Rate of change of the distribution function df/dt = C[f] 

∂f
∂t
+ V.∇( ) f + F.∇ p( ) f =C[ f ]

collision:  
 
Rate of change of the distribution function of particle type 1: 
 
 
 
 
 
This is an integro-differential equation which is very difficult to solve. 

1+ 2→ 1́ + ʹ2

∂f1
∂t
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Relaxation time approximation 

•  The distribution function goes to equilibrium distribution function in a 
relaxation time τ. 

 
•  Assumptions: i. Magnetic field is not the dominant scale. 
 
ii. Landau quantization of energy levels has not been considered. 
 
 
 
Collision integral =  
	 C[ f ]= − f − f0

τ
= −δ f τ

f = f0 +δ f
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•  In the static and homogeneous case 

•  Ansatz :   

•  Lets take  electric and magnetic field along X and Z axis.  

                             
                             
 
                            Cyclotron frequency 
 

Electric current is given by: 
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                                  Quasi Particle Model 1 for QGP 
 
•  QGP is described by an ideal gas of quasiparticles having temperature-

dependent mass arising from the interactions with the surrounding quarks and 
gluons. 

•  Effective mass : 

•  Thermal mass : 

•  Effective coupling : 
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Relaxation time: 

τqq =
1

5.1T α 2
s ln(

1
αs
)(1+0.12(2n f +1))

τ g =
1

22.5T α 2
s ln(

1
αs
)(1+0.06n f )



                           Quasi Particle model 2 for QGP 
 
•  Lattice QCD EOS can be reproduced in terms of non-interacting quasiparticles 

having effective fugacities (zq, zg) which encodes all the interaction effects of 
the particles in the system. 

•  Distribution function for gluon : 

•   Distribution function for quark or antiquark : 

•  Single particle energy :  

f g0 =
zg exp(−β p)
1− zg exp(−β p)

f0
q/q =

zq exp(−βε(p))
1+ zq exp(−βε(p))

ω g
p = p +T

2∂T ln(z g )

ω q
p = p 2 +m 2 +T 2∂T ln(zq )



•  Temp dependence of fugacities:  
zq ,g = aq ,g exp(−bq ,g / x 5),  for x < xq ,g

zq ,g = ʹaq ,g exp(− ʹbq ,g / x 5),  for x > xq ,g ,xq ,g ≡Tq ,g /Tc ≈1.70,1.68
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Relaxation time in QPM 2 
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Relaxation time of QPM 2 is one order magnitude is larger than QPM 1. 
 
It decreases as temp increases since number density increases as temp increases 
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σel /T for QPM 2 is one order larger than QPM 1 since relaxation time is one 
order magnitude larger in QPM 2.  
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It decreases with B at a fixed temp. But the rate of decrease in QPM 2 
 is larger than QPM 1. 
 
 Since in QPM 1 value of the relaxation time is order of magnitude smaller 
 than the relaxation time in QPM II,          in the denominator  is larger 
 for QPM 2. 
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It increases with chemical potential due to the increase in distribution function. 
 
 Variation of normalized electrical conductivity with quark chemical potential is 
connected with the variation of relaxation time with quark chemical potential 
and the Boltzmann factor  in the equilibrium distribution function. 
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	For QPM 1 Hall conductivity increases with magnetic field.  
 
At a fixed B, it decreases with temp due to decrease in relaxation time. 
 
However for QPM 2, it has a non monotonic behavior with temperature, where 
at small temperature it decreases with increase in magnetic field and at high 
temperature it increases with increase in magnetic field.  
 
 At relatively small temperature relaxation time is large and  it goes as  
 
 At high temperature, relaxation time is small and it goes as  

1/ωτ

ωτ
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It increases with chemical potential because no of particles increases  
compared to anti particles. 
 
It vanishes at zero chemical potential due to equal no of particles and anti  
Particles and they move in same direction. 



                                      CONCLUSIONS 
 
•   Electrical and Hall conductivity have been measured for QGP 
for two different quasi particle models.  
 
•  Electrical conductivity for QPM 2 is one order magnitude larger 

than QPM 1 due to large relaxation time in QPM 2. 

•  Hall conductivity increases with magnetic field for QPM 1. 

•  It has a non monotonic behavior with magnetic field for QPM 2.   

 
 
 


