Heavy Quarks in QGP: Nonperturbative Input from Lattice

Saumen Datta

Tata Institute of Fundamental Research, Mumbai

January 29, 2024

Saumen Datta Heavy Quarks in QGP: Nonperturbative Input from Lattice

向 ト く ヨ ト く ヨ ト

Heavy quarks as probe of QGP

- Heavy quarks c, b provide interesting probes of the medium created in heavy ion collision experiments.
- These experiments lead to a thermalized deconfined medium with a small $\tau_{\rm th} < 1$ fm for the light quarks and gluons.
- The thermalization time of the heavy quarks is expected to be different.

Svetitsky, PRD 37(1988)2484; Alam, Raha & Sinha, PRL 73(1994)1805; ...

m_c, *m_b* ≫ Λ_{QCD}, *T*_{fireball} production: initial hard scatterings *p* ~ √*m_QT* ≫ *T* even for thermalized quarks. Scattering with medium particles: momentum exchange ~ *T* Takes *O*(*m_Q*/*T*) hard collisions to change momentum by *O*(1)
 *τ*_{th} ~ *m_Q/T τ*_{light} large: late/incomplete thermalization?
 R_{AA}, flow of heavy-light mesons: interesting probes.

heavy-light mesons in QGP

Moderate momentum charm quarks flow with the medium flow, almost like the light quarks.

ALICE Coll., PRL 120 (2018) 102301; arXiv: 2307.14084

イロト イヨト イヨト イヨト

Heavy quarks in plasma

- Heavy quarks: many (nearly) uncorrelated collisions before momentum change of O(1).
- A Langevin framework is suitable.
- For a low momentum heavy quark,

$$\frac{dp_i}{dt} = \xi_i(t) - \eta_D(p)p_i, \qquad \langle \xi_i(t) \, \xi_j(t') \rangle = \kappa_{ij}(p) \, \delta(t-t')$$

Svetitsky '88; Mustafa, Pal, Srivastava, '97; Moore & Teaney '05; Rapp & van Hees '05 Leads to the Fokker-Planck equation

$$rac{\partial f_Q(p,t)}{\partial t} \;=\; -rac{\partial}{\partial p_i} \left[p_i \, \eta_D(p) \, f_Q(p,t)
ight] \;+\; rac{\partial^2}{\partial p_i \, \partial p_i} \left[\kappa_{ij}(p) \, f_Q(p,t)
ight]$$

For low momenta, just one coefficient κ. Standard nonrelativistic relations connect κ to η_D and D_s, the position space diffusion coefficient.

$$\eta_D = \frac{\kappa}{2 M T}, \qquad \langle x^2(t) \rangle = 6 D_s t, \qquad D_s = \frac{2 T^2}{\kappa_s}$$

Calculation of κ

A field theoretic definition of κ can be given from the force-force correlator:

$$3\kappa = \frac{1}{\chi} \lim_{\omega \to 0} \int_{-\infty}^{\infty} dt \, e^{i\omega t} \int d^3x \left\langle \frac{1}{2} \left\{ F_i(t,x), F_i(0,0) \right\} \right\rangle$$

• Expanding the force term in a series in 1/M:

$$F^{i} = M \frac{dJ^{i}}{dt} = \phi^{\dagger} \left\{ -gE^{i} + \frac{\left[D^{i}, D^{2} + c_{b}g\sigma \cdot B\right]}{2M} + \dots \right\} \phi$$

▶ In leading order in $O\left(\frac{1}{M}\right)$ one gets only the *gE* force.

$$3\kappa = rac{1}{3} \lim_{\omega o 0} \int_{-\infty}^{\infty} dt \, e^{i\omega t} \, \langle \mathrm{Tr} \, W(t,-\infty)^{\dagger} \, E_i(t) \, W(t,0) \, E_i(0) \, W(0,-\infty)
angle$$

J. Casalderrey-Solana & D. Teaney, PRD 74 (2006) 085012; S. Caron-Huot, M. Laine & G. Moore, JHEP 04 (2009) 53; A. Bouttefeux & M. Laine, JHEP 12 (2020) 150

Calculation of κ_{E}

• At leading order of perturbation theory, this simplifies to $3\kappa = \frac{g^2}{3} \int \frac{d^3p}{(2\pi)^3} \langle \operatorname{Tr} E_i E_i \rangle (\omega = 0, \vec{p}) = g^2 \frac{4}{3} \int \frac{d^3p}{(2\pi)^3} p^2 G_{A_0 A_0}^{>}(0, \vec{p})$

▶ Using $G_{00}^{>}(\omega, \vec{p}) = 2(1 + n_B(\omega)) \rho_{00}(\omega, \vec{p})$ this can be connected to standard scattering with thermal particles.

Caron-Huot & Moore, PRL 100 (2008) 052301

► The t-channel 2 → 2 collision processes dominate for quarks at medium energy. Radiative processes become important at higher momenta.

> Svetitsky '88, Moore & Teaney 2005, ... S. Das, J. Alam & P. Mohanty, PRC 82(2010)014908

$\kappa_{\scriptscriptstyle E}$ in NLO

The diagrams infrared singular: cured by the Debye screening of A₀A₀ correlator. Calculable in HTL.

$$\frac{\kappa_E}{T^3} = \frac{2g^4}{27\pi} \left[N_c \left(\ln \frac{2T}{m_D} + C \right) + \frac{N_f}{2} \left(\ln \frac{4T}{m_D} + C \right) \right]$$

Series in g rather than in α . NLO corrections very large.

Caron-Huot & Moore, PRL 100 (2008) 052301

$\kappa_{\rm E}$ from lattice

- The LO calculation gives a value of κ substantially smaller than required to interpret the R_{AA} and v_2 results.
- For phenomenology, one often uses the LO form, with some tuning to get κ in the right ballpark.

see Cao et al., PRC 99 (2019) 054907, for a summary.

Nonperturbatively, one can calculate the Matsubara correlator on the lattice. This can be connected to the spectral function.

$$G_{EE}(\tau) = \int_0^\infty \frac{d\omega}{\pi} \rho_{EE}(\omega) \frac{\cosh \omega(\tau - 1/2T)}{\sinh \omega/2T}$$

Then κ_E can be extracted from the infrared behavior of $\rho_{EE}(\omega)$:

$$\rho_{IR} \approx_{\omega \to 0} \frac{\kappa_E \omega}{2T}$$

• Extraction of κ_E from $G_{EE}(t)$ requires modelling of $\rho_{EE}(\omega)$.

$\kappa_{\rm E}$ from lattice

▶ In the theory with only thermal gluons, κ_E has been calculated by various groups, and continuum results have been obtained in the temperature range $T_c < T \lesssim 3.5 T_c$. Banerjee, Datta, Gavai, Majumdar, PRD (2012), NP A 1038 (2023) 122721 Bielefeld Group(Kaczmarek, et al.), PRD (2015), PRD 103 (2021) 014511. Brambilla, et al. (TUMQCD), PRD (2020), PRD 107 (2023) 054508

• Good agreement between different calculations, using very different methods and different models for $\rho_{EE}(\omega)$.

NLO PT result is in agreement with the lattice results.

Unquenching effects

First results with thermal quarks (with somewhat unphysical quarks, $m_{\pi} \approx 320$ MeV): large effect of unquenching.

Altenkort, et al., PRL 123(2023)231902

κ from lattice

• At $\mathcal{O}\left(\frac{1}{M}\right)$ the contribution from the *BB* correlator needs to be taken into account.

$$\kappa_Q ~pprox ~\kappa_E ~+~ rac{2}{3} \left< v^2 \right> \kappa_B \,, \qquad \left< v^2 \right> ~=~ rac{3 \, T}{M_{
m kin}}$$

Bouttefeux & Laine, JHEP 12 ('20) 150

▶ Unlike G_{EE} , G_{BB} correlator has an anomalous dimension. κ_B is obtained from the IR part of

$c_b^2(\mu) \, G_{\scriptscriptstyle BB}^{ m ren}(\mu;T)$

The μ dependence of c_b^2 cancels that of $G_{BB}(\mu; T)$.

The infrared singularity from BB correlator is not cured by Debye screening: κ_B is inherently nonperturbative.

$$\frac{\kappa_B}{T^3} \approx \frac{2g^4}{27\pi} \left[N_c \left(\ln \frac{2T}{m_G} + C \right) + \frac{N_f}{2} \left(\ln \frac{4T}{m_G} + \frac{1}{2} + C \right) \right]$$

where $m_G \sim c'g^2 T$ is an inherently nonperturbative scale. Laine, JHEP 06 (2021) 139

$1/m_Q$ correction

- The anomalous dimension of G_{BB}(t) makes the extraction of κ_B somewhat more complicated.
- \triangleright Z_B large: nonperturbative estimation required.
- A nonperturbative analysis done for the gluon plasma.

Banerjee, Datta & Laine, JHEP 08(2022) 128

 Size of 1/m_Q correction moderate, ~ 30-35% (charm), 15-20% (bottom) at 2 T_c.

• $\tau_b \approx 3\tau_c > 10 \text{ fm}$ indicates incomplete thermalization of $b_{\text{c}} \ge 10 \text{ fm}$

Effect of thermal quarks

The first lattice results for κ_c from a calculation with thermal quarks ($m_{\pi} \sim 320 \text{ MeV}$) came out recently.

L. Altenkort, et al. (HotQCD), arXiv:2311.01525

- Size of 1/m_Q correction smaller than was seen for gluon plasma.
- The renormalization done differently: would be reassuring to have a similar analysis of Z_B as in the gluonic case.
- Close to T_c unquenching effect substantial.

Summary of results

 Lattice calculations provide reliable nonperturbative results for static properties of the QGP at zero and small baryon chemical potential.

But transport properties are very difficult to obtain.

- The heavy quark diffusion coefficient κ is one of the quantities where we have had good success.
- ► For a gluonic plasma, various systematics well-studied.
- Probably the only transport coefficient where a quite sophisticated lattice calculation available for the theory with thermal (if somewhat unphysical) quarks.
- Effect of thermal quarks large. Motivates further study of the systematics of the renormalization, the analysis, and the quark mass effect.

イロト イヨト イヨト

EXTRA SLIDE: Effect of thermal quarks in NLO PT

S. Datta, in:Dynamics of Hot QCD Matter, S.K. Das et al., IJMP E 31 (2022) 12.

EXTRA SLIDE: Matching to Lorentz Force

We need to calculate

$$M \frac{\partial J^{i}}{\partial t} \equiv \frac{M A_{i}^{QCD}}{N^{QCD}},$$

where A_i^{QCD} and N^{QCD} are the matrix elements of $\frac{\partial}{\partial t} \int d^3x J_i^{QCD}$ and $\int d^3x J_0^{QCD}$, respectively. Matching of the QCD operators to the Lorentz force term has been worked out to NLO by Laine (2103.14270). Taking the IR force term

$$F_i^{IR} = \theta^{\dagger} \left\{ Z_E E_i + Z_B (v \times B)_i \right\} \theta$$

 Z_E, Z_B are fixed by demanding

$$\frac{MA_i}{N}\bigg|_{QCD} = \frac{F_i}{N}\bigg|_{IR}$$

Calculating both sides to NLO, one gets (2103.14270)

$$Z_E = 1,$$
 $Z_B = 1 + rac{g^2 N_c}{16\pi^2} \left[rac{1}{\epsilon} + 2 \log rac{\mu_B \, \mathrm{e}^{\gamma_E}}{4\pi T} - 2
ight]$

・ 同 ト ・ ヨ ト ・ ヨ ト

EXTRA SLIDE: Z_E

- The $\frac{1}{\epsilon}$ term in Z_B cancels a singularity in the BB correlator.
- ► The scale dependence in the finite term should be cancelled by a Wilson coefficient, equivalent to evaluating the correlator at $\mu_B \approx 4\pi T e^{1-\gamma_E} \approx 19.2T$.
- The nontrivial task is to connect the lattice correlator to MS.
- A detailed NP renormalization program for the clover implementation of the *B* field was carried out by the ALPHA collaboration.

D. Guazzini, H. Meyer & R. Sommer, JHEP 10 (2007) 081.

- ▶ NP renormalization coefficient was calculated in Schrödinger functional scheme, and connected to *ms* at a a large scale.
- ► Then we run it down to 19.2 T.

• (1) • (

EXTRA SLIDE: Analysis

$$\rho_{EE}^{IR}(\omega) \equiv \frac{\kappa \omega}{2T}, \qquad \rho_{UV}(\omega) \equiv \frac{g^2(\mu)C_f\omega^3}{6\pi}$$

$$\mu_B = \max\left[\omega^{1-\frac{\gamma_0}{b_0}} (\pi T)^{\frac{\gamma_0}{b_0}}, \pi T\right], \qquad \gamma_0 = \frac{3}{8\pi^2} \text{ (BB)}, \quad 0 \text{ (EE)}$$

- Model $\rho(\omega)$ as (1) $\rho_1(\omega) \equiv \max(\rho_{EE}^{R}(\omega), c\rho_{UV}(\omega))$
- ▶ Physically better motivated: Francis et al. '15 (2) $\rho_2(\omega) \equiv \sqrt{(\rho_{EE}^{IR}(\omega))^2 + (c\rho_{UV}(\omega))^2}$
- In our fits, we got $c \sim 1$, as expected.
- Also tried adding a Fourier mode

$$\rho_{1f,2f}(\omega) \equiv (1 + d\sin \pi y) \ \rho_{1,2}^{c=1}(\omega), \qquad y \ = \ \frac{\log\left(1 + \frac{\omega}{\pi T}\right)}{1 + \log\left(1 + \frac{\omega}{\pi T}\right)}$$

d was found to be small, ≤ 0.12.
The whole analysis is done within a bootstrap framework.