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symmetry to a good extent.

o The non-singlet part of this chiral symmetry gets broken at low T,
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o This happens through a crossover transition at a temperature now
known to unprecedented accuracy 156.5(1.5) MeV.

[HotQCD collab. 18, F. Burger et. al. 18, Budapest-Wuppertal collab. 20]
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Chiral symmetry in QCD

o Since m, g < Aqcp, 2+1 flavor QCD respects U, (2) x Ugr(2) chiral
symmetry to a good extent.

o The non-singlet part of this chiral symmetry gets broken at low T,
SUA(Z) X 5U\/(2) — 5U\/(2)

o This happens through a crossover transition at a temperature now
known to unprecedented accuracy 156.5(1.5) MeV.

[HotQCD collab. 18, F. Burger et. al. 18, Budapest-Wuppertal collab. 20]
o The singlet part Ua(1) is

myq — 0.

[Pisarski & Wilczek 84, Pelissetto & Vicari 13, G. Fejos, 22]
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Chiral symmetry in QCD

o Since m, g < Aqcp, 2+1 flavor QCD respects U, (2) x Ugr(2) chiral
symmetry to a good extent.

o The non-singlet part of this chiral symmetry gets broken at low T,
SUA(Q) X SU\/(2) — 5U\/(2)

o This happens through a crossover transition at a temperature now
known to unprecedented accuracy 156.5(1.5) MeV.

[HotQCD collab. 18, F. Burger et. al. 18, Budapest-Wuppertal collab. 20]

o The singlet part Us(1) is anomalous yet can affect the order of the
chiral phase transition as m, 4 — 0.
[Pisarski & Wilczek 84, Pelissetto & Vicari 13, G. Fejos, 22]

@ Do singlet and non-singlet chiral symmetries gets restored
simultaneously?

o F = £ DA



Yo — V—)oo/ dr—Df P\A; TF)

o Not an exact symmetry— what observables to look for? Degeneracy
of the 2-point (integrated) correlation functions [shuryak, 94]

4m? p(\, my)
(A2 +

mg)?

[m]

=

DA
Slide 3 of 14



o Not an exact symmetry— what observables to look for? Degeneracy
of the 2-point (integrated) correlation functions [shuryak, 94]

X — V—)oo/ d)\4mf p )\ mf)

(W + mg)?
o For p()\) :

near-zero modes need careful study. Suffer from lattice
cut-off + finite volume effects.

[ HotQCD collaboration, 12, G. Cossu et. al, 13, 14, 15, V. Dick et. al. 15, Suzuki et. al., 18, 20 ]
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o Not an exact symmetry— what observables to look for? Degeneracy

of the 2-point (integrated) correlation functions [shuryak, 94]

Vo0 4mf (N, my¢)
dA—————-—-*~
Xe = X5 / e

o For p(\) : near-zero modes need careful study. Suffer from lattice
cut-off + finite volume effects.

[ HotQCD collaboration, 12, G. Cossu et. al, 13, 14, 15, V. Dick et. al. 15, Suzuki et. al., 18, 20 ]

o Bulk part: — p(\) ~ A3 is a necessary cond. for Us(1) breaking
invisible in upto 6 point correlators [aoki, Fukaya & Taniguchi, 12]
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o Not an exact symmetry— what observables to look for?

[Shuryak, 94]

V—00 o 4m% p(>\, m,c)
.= da\—————--~
Yo /o O + m2)?

o For p(\) : near-zero modes need careful study. Suffer from lattice
cut-off + finite volume effects.
[ HotQCD collaboration, 12, G. Cossu et. al, 13, 14, 15, V. Dick et. al. 15, Suzuki et. al., 18, 20 |

o Bulk part: — p(\) ~ A% is a necessary cond. for Us(1) breaking
invisible in upto 6 point correlators [aoki, Fukaya & Taniguchi, 12]

o Measuring higher point correlation functions is relevant.
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Looking at spectral density of QCD at finite temperature

o Very little known. Only recently studied in detail

[Aoki, Fukaya & Taniguchi, 12].
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o Very little known. Only recently studied in detail

[Aoki, Fukaya & Taniguchi, 12].

o Assuming p(\, m) to be analytic in A\, m?, look at Ward
identities of n-point function of scalar & pseudo-scalar
currents when chiral symmetry is restored.
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Looking at spectral density of QCD at finite temperature

o Very little known. Only recently studied in detail

[Aoki, Fukaya & Taniguchi, 12].

o Assuming p(\, m) to be analytic in A\, m?, look at Ward
identities of n-point function of scalar & pseudo-scalar
currents when chiral symmetry is restored.

o Bulk part: — p()\) ~ A* is a necessary cond. for Ux(1)
breaking invisible in upto 6 point correlators
[Aoki, Fukaya & Taniguchi, 12]

+analytic form of the bulk.
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Typical Spectral Density of QCD

o The eigenvalue density can be characterized as

pA) _po A a(T,m) N o(T,m N
moptro e teor tpelm.
[Fig. from O. Kaczmarek, Ravi Shanker, S. S., PRD 108, 094501, 2023 ].
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Spectral Density when chiral symmetry is restored

@ The bulk modes show a linear rise characterized by
c(T,m) =16.8(4) T2+ O(m?/T?). This is a new finding which has
consequences for U A (1) breaking in the chiral limit.
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Spectral Density when chiral symmetry is restored

0.5

T=145 MeV
=171 MeV s
cRMT prediction

| Follow predictions,from chiral random matrix theory |

P(x) = Se 7 [J3(x) — (x)A(X)] , x = Ami
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Level-spacing distribution of the bulk modes
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When is Ux(1) effectively restored — 1.157,
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[Fig. from O. Kaczmarek, Ravi Shanker, S. S., PRD 108, 094501, 2023 ].
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What more does the eigenspectra tell us?

o T < T, : random matrix theory predicts eigenvalues of QCD —
[Fig. from O. Kaczmarek, Ravi Shanker, S. S., PRD 108, 094501, 2023 ].
o T>T.: interactions become short ranged.
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o One can visualize quarks as many-body states moving in the
instantons

background of lowest energy topological states of gauge fields called
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How can we understand our results

@ One can visualize quarks as moving in the
background of lowest energy topological states of gauge fields called
instantons

o T < T, : Instantons strongly interacting — disordered potential
creates bulk modes in the quark Dirac spectrum
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How can we understand our results

@ One can visualize quarks as moving in the
background of lowest energy topological states of gauge fields called
instantons

o T < T, : Instantons strongly interacting — disordered potential
creates bulk modes in the quark Dirac spectrum

o T > T, : Interactions among instantons become short range
— liquid-like

o T =1.15T. : The near-zero and the bulk modes disentangle.
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How can we understand our results

@ One can visualize quarks as moving in the
background of lowest energy topological states of gauge fields called
instantons

o T < T, : Instantons strongly interacting — disordered potential
creates bulk modes in the quark Dirac spectrum

o T > T, : Interactions among instantons become short range
— liquid-like

o T =1.15T. : The near-zero and the bulk modes disentangle.

o Studies also observe jump in the electrical conductivity at the same
T [A Amatoet al, 14]. Same is observed in interacting many-electron
system in a disordered potential [alshuler et. al, 04]
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Topological origin of the Uxs(1)?

o The topological susceptibility is related to Ua(1) breaking through
Xt = m? Xdisc = mz(XTF - X5)/4'

.. 1/4
o Characterizing, xt/ (T)~(T./T)P [Petreczky, Schadler, $.5. 16].
[See also C. Bonati et. al., 15, 18, Sz. Borsanyi et. al., 16, F. Burger et. al, 18 ]

80 T T T T

T T
4
x4 —

70 (M2 Xsc) /4 =

60 -
Abrupt change in sigpe i
40

30 - .
te instanton gas

T [MeV]

150 200 250 300 350 400 450 500

o = = = = 9ac



Summary

o We are now able to understand the thermodynamics of chiral
symmetry restoration, from the
fundamental theory of strong interactions, QCD.
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quarks and disorder due to the gauge fields.
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Summary

o We are now able to understand the thermodynamics of chiral
symmetry restoration, from the
fundamental theory of strong interactions, QCD.

o It involves subtle interplay of many-body interactions among
quarks and disorder due to the gauge fields.

o The precise microscopic origin is not yet understood.
o Interesting if one can observe this from the decay of

7 —77(2.3%), 7 — p°v(30%) meson in the CBM
experiment.
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Backup: How well are Chiral Ward Identities realized for
2+1 f QCD?

Qo

[L. Giusti, G. C. Rossi, M. Testa, 04, HotQCD 1205.3535]
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[Fig. from Petreczky, Schadler, S.S. 16].
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