Anomalous chiral symmetry in finite temperature QCD and its implications

Sayantan Sharma

The Institute of Mathematical Sciences

January 29, 2024

Meeting on the physics of ALICE, CBM and STAR, VECC

Sayantan Sharma MPACS, VECC Kolkata

nar

- Since m_{u,d} ≪ Λ_{QCD}, 2+1 flavor QCD respects U_L(2) × U_R(2) chiral symmetry to a good extent.
- The non-singlet part of this chiral symmetry gets broken at low T, $SU_A(2) \times SU_V(2) \rightarrow SU_V(2)$
- This happens through a crossover transition at a temperature now known to unprecedented accuracy 156.5(1.5) MeV.
 [HorOCD collab. 18. E. Burger et al. 18. Burgerst-Wungertal collab. 20]
- The singlet part U_A(1) is anomalous yet can affect the order of the chiral phase transition as m_{u,d} → 0.

[Pisarski & Wilczek 84, Pelissetto & Vicari 13, G. Fejos, 22]

• Do singlet and non-singlet chiral symmetries gets restored simultaneously?

イロト イポト イヨト イヨト

- Since m_{u,d} ≪ Λ_{QCD}, 2+1 flavor QCD respects U_L(2) × U_R(2) chiral symmetry to a good extent.
- The non-singlet part of this chiral symmetry gets broken at low T, $SU_A(2) \times SU_V(2) \rightarrow SU_V(2)$
- This happens through a crossover transition at a temperature now known to unprecedented accuracy 156.5(1.5) MeV.
 (HotOCD collab. 18. F. Burger et. al. 18. Budapest-Wuppertal collab. 20)
- The singlet part $U_A(1)$ is anomalous yet can affect the order of the chiral phase transition as $m_{u,d} \rightarrow 0$.

[Pisarski & Wilczek 84, Pelissetto & Vicari 13, G. Fejos, 22]

• Do singlet and non-singlet chiral symmetries gets restored simultaneously?

イロト イボト イヨト イヨト

- Since m_{u,d} ≪ Λ_{QCD}, 2+1 flavor QCD respects U_L(2) × U_R(2) chiral symmetry to a good extent.
- The non-singlet part of this chiral symmetry gets broken at low T, $SU_A(2) \times SU_V(2) \rightarrow SU_V(2)$
- This happens through a crossover transition at a temperature now known to unprecedented accuracy 156.5(1.5) MeV.

[HotQCD collab. 18, F. Burger et. al. 18, Budapest-Wuppertal collab. 20]

• The singlet part $U_A(1)$ is anomalous yet can affect the order of the chiral phase transition as $m_{u,d} \rightarrow 0$.

[Pisarski & Wilczek 84, Pelissetto & Vicari 13, G. Fejos, 22]

• Do singlet and non-singlet chiral symmetries gets restored simultaneously?

nar

イロト イヨト イヨト

- Since m_{u,d} ≪ Λ_{QCD}, 2+1 flavor QCD respects U_L(2) × U_R(2) chiral symmetry to a good extent.
- The non-singlet part of this chiral symmetry gets broken at low T, $SU_A(2) \times SU_V(2) \rightarrow SU_V(2)$
- This happens through a crossover transition at a temperature now known to unprecedented accuracy 156.5(1.5) MeV.

[HotQCD collab. 18, F. Burger et. al. 18, Budapest-Wuppertal collab. 20]

• The singlet part $U_A(1)$ is anomalous yet can affect the order of the chiral phase transition as $m_{u,d} \rightarrow 0$.

[Pisarski & Wilczek 84, Pelissetto & Vicari 13, G. Fejos, 22]

• Do singlet and non-singlet chiral symmetries gets restored simultaneously?

イロト イヨト イヨト

- Since m_{u,d} ≪ Λ_{QCD}, 2+1 flavor QCD respects U_L(2) × U_R(2) chiral symmetry to a good extent.
- The non-singlet part of this chiral symmetry gets broken at low T, $SU_A(2) \times SU_V(2) \rightarrow SU_V(2)$
- This happens through a crossover transition at a temperature now known to unprecedented accuracy 156.5(1.5) MeV.

[HotQCD collab. 18, F. Burger et. al. 18, Budapest-Wuppertal collab. 20]

• The singlet part $U_A(1)$ is anomalous yet can affect the order of the chiral phase transition as $m_{u,d} \rightarrow 0$.

[Pisarski & Wilczek 84, Pelissetto & Vicari 13, G. Fejos, 22]

• Do singlet and non-singlet chiral symmetries gets restored simultaneously?

Sayantan Sharma MPACS, VECC Kolkata

Slide 2 of 14

DQ P

イロト イポト イヨト イヨト 三日

$$\chi_{\pi} - \chi_{\delta} \stackrel{V \to \infty}{\to} \int_{0}^{\infty} d\lambda \frac{4m_{f}^{2} \rho(\lambda, m_{f})}{(\lambda^{2} + m_{f}^{2})^{2}}$$

 For ρ(λ) : near-zero modes need careful study. Suffer from lattice cut-off + finite volume effects.

[HotQCD collaboration, 12, G. Cossu et. al, 13, 14, 15, V. Dick et. al. 15, Suzuki et. al., 18, 20]

- Bulk part: $\rightarrow \rho(\lambda) \sim \lambda^3$ is a necessary cond. for $U_A(1)$ breaking invisible in upto 6 point correlators [Aoki, Fukaya & Taniguchi, 12]
- Measuring higher point correlation functions is relevant.

(1日) (1日) (1日)

$$\chi_{\pi} - \chi_{\delta} \stackrel{V \to \infty}{\to} \int_{0}^{\infty} d\lambda \frac{4m_{f}^{2} \rho(\lambda, m_{f})}{(\lambda^{2} + m_{f}^{2})^{2}}$$

 For ρ(λ) : near-zero modes need careful study. Suffer from lattice cut-off + finite volume effects.

[HotQCD collaboration, 12, G. Cossu et. al, 13, 14, 15, V. Dick et. al. 15, Suzuki et. al., 18, 20]

- Bulk part: $\rightarrow \rho(\lambda) \sim \lambda^3$ is a necessary cond. for $U_A(1)$ breaking invisible in upto 6 point correlators [Aoki, Fukaya & Taniguchi, 12]
- Measuring higher point correlation functions is relevant.

・ロト ・ 同ト ・ ヨト ・ ヨト

$$\chi_{\pi} - \chi_{\delta} \stackrel{V \to \infty}{\to} \int_{0}^{\infty} d\lambda \frac{4m_{f}^{2} \rho(\lambda, m_{f})}{(\lambda^{2} + m_{f}^{2})^{2}}$$

 For ρ(λ) : near-zero modes need careful study. Suffer from lattice cut-off + finite volume effects.

[HotQCD collaboration, 12, G. Cossu et. al, 13, 14, 15, V. Dick et. al. 15, Suzuki et. al., 18, 20]

- Bulk part: $\rightarrow \rho(\lambda) \sim \lambda^3$ is a necessary cond. for $U_A(1)$ breaking invisible in upto 6 point correlators [Aoki, Fukaya & Taniguchi, 12]
- Measuring higher point correlation functions is relevant.

DQ P

イロト イヨト イヨト

$$\chi_{\pi} - \chi_{\delta} \stackrel{V \to \infty}{\to} \int_{0}^{\infty} d\lambda \frac{4m_{f}^{2} \rho(\lambda, m_{f})}{(\lambda^{2} + m_{f}^{2})^{2}}$$

 For ρ(λ) : near-zero modes need careful study. Suffer from lattice cut-off + finite volume effects.

[HotQCD collaboration, 12, G. Cossu et. al, 13, 14, 15, V. Dick et. al. 15, Suzuki et. al., 18, 20]

- Bulk part: $\rightarrow \rho(\lambda) \sim \lambda^3$ is a necessary cond. for $U_A(1)$ breaking invisible in upto 6 point correlators [Aoki, Fukaya & Taniguchi, 12]
- Measuring higher point correlation functions is relevant.

DQ C

4 日本 (周本)(第本)(本)(第本)(第二)

• Very little known. Only recently studied in detail

[Aoki, Fukaya & Taniguchi, 12].

- Assuming ρ(λ, m) to be analytic in λ, m², look at Ward identities of n-point function of scalar & pseudo-scalar currents when chiral symmetry is restored.
- Bulk part: $\rightarrow \rho(\lambda) \sim \lambda^3$ is a necessary cond. for $U_A(1)$ breaking invisible in upto 6 point correlators [Aoki, Fukaya & Taniguchi, 12]
- Non-analyticities in the deep infrared part of the spectrum-hanalytic form of the bulk.

• Very little known. Only recently studied in detail

[Aoki, Fukaya & Taniguchi, 12].

- Assuming ρ(λ, m) to be analytic in λ, m², look at Ward identities of n-point function of scalar & pseudo-scalar currents when chiral symmetry is restored.
- Bulk part: $\rightarrow \rho(\lambda) \sim \lambda^3$ is a necessary cond. for $U_A(1)$ breaking invisible in upto 6 point correlators [Aoki, Fukaya & Taniguchi, 12]
- Non-analyticities in the deep infrared part of the spectrum+analytic form of the bulk.

・ロト ・ 同ト ・ 三ト ・ 三ト

• Very little known. Only recently studied in detail

[Aoki, Fukaya & Taniguchi, 12].

- Assuming ρ(λ, m) to be analytic in λ, m², look at Ward identities of n-point function of scalar & pseudo-scalar currents when chiral symmetry is restored.
- Bulk part: $\rightarrow \rho(\lambda) \sim \lambda^3$ is a necessary cond. for $U_A(1)$ breaking invisible in upto 6 point correlators

[Aoki, Fukaya & Taniguchi, 12]

• Non-analyticities in the deep infrared part of the spectrum+analytic form of the bulk.

(日本)(周本)(王本)(王本)

• Very little known. Only recently studied in detail

[Aoki, Fukaya & Taniguchi, 12].

- Assuming ρ(λ, m) to be analytic in λ, m², look at Ward identities of n-point function of scalar & pseudo-scalar currents when chiral symmetry is restored.
- Bulk part: $\rightarrow \rho(\lambda) \sim \lambda^3$ is a necessary cond. for $U_A(1)$ breaking invisible in upto 6 point correlators

[Aoki, Fukaya & Taniguchi, 12]

• Non-analyticities in the deep infrared part of the spectrum+analytic form of the bulk.

SOR

・ロト ・ 同ト ・ ヨト ・ ヨト

Typical Spectral Density of QCD

• The eigenvalue density can be characterized as

Spectral Density when chiral symmetry is restored

• The bulk modes show a linear rise characterized by $c(T,m) = 16.8(4)T^2 + O(m^2/T^2)$. This is a new finding which has consequences for U A (1) breaking in the chiral limit.

Spectral Density when chiral symmetry is restored

Level-spacing distribution of the bulk modes

When is $U_A(1)$ effectively restored $\rightarrow 1.15T_c$

What more does the eigenspectra tell us?

- $T < T_c$: random matrix theory predicts eigenvalues of QCD \rightarrow disordered phase [Fig. from O. Kaczmarek, Ravi Shanker, S. S., PRD 108, 094501, 2023].
- $T > T_c$: disorder decreases: interactions become short ranged.

- One can visualize quarks as many-body states moving in the background of lowest energy topological states of gauge fields called instantons
- $T < T_c$: Instantons strongly interacting \rightarrow disordered potential creates bulk modes in the quark Dirac spectrum
- *T* > *T_c* : Interactions among instantons become short range
 → liquid-like
- $T = 1.15 T_c$: The near-zero and the bulk modes disentangle. the axial part of chiral symmetry is also restored
- Studies also observe jump in the electrical conductivity at the same *T* [A. Amato et. al., 14]. Same is observed in interacting many-electron system in a disordered potential [Altshuler et. al. 04]

イロト イボト イヨト

- One can visualize quarks as many-body states moving in the background of lowest energy topological states of gauge fields called instantons
- $T < T_c$: Instantons strongly interacting \rightarrow disordered potential creates bulk modes in the quark Dirac spectrum
- *T* > *T_c* : Interactions among instantons become short range
 → liquid-like
- $T = 1.15T_c$: The near-zero and the bulk modes disentangle. the axial part of chiral symmetry is also restored
- Studies also observe jump in the electrical conductivity at the same *T* [A. Amato et. al., 14]. Same is observed in interacting many-electron system in a disordered potential [Altshuler et. al. 04]

・ロト ・ 同ト ・ ヨト ・ ヨト

- One can visualize quarks as many-body states moving in the background of lowest energy topological states of gauge fields called instantons
- $T < T_c$: Instantons strongly interacting \rightarrow disordered potential creates bulk modes in the quark Dirac spectrum
- $T > T_c$: Interactions among instantons become short range \rightarrow liquid-like
- $T = 1.15 T_c$: The near-zero and the bulk modes disentangle. the axial part of chiral symmetry is also restored
- Studies also observe jump in the electrical conductivity at the same T [A. Amato et. al., 14]. Same is observed in interacting many-electron system in a disordered potential [Altshuler et. al., 04]

イロト イポト イヨト イヨト

- One can visualize quarks as many-body states moving in the background of lowest energy topological states of gauge fields called instantons
- $T < T_c$: Instantons strongly interacting \rightarrow disordered potential creates bulk modes in the quark Dirac spectrum
- $T > T_c$: Interactions among instantons become short range \rightarrow liquid-like
- $T = 1.15 T_c$: The near-zero and the bulk modes disentangle. the axial part of chiral symmetry is also restored
- Studies also observe jump in the electrical conductivity at the same *T* [A. Amato et. al., 14]. Same is observed in interacting many-electron system in a disordered potential [Altshuler et. al. 04]

DQ C

イロト イポト イヨト イヨト 三日

- One can visualize quarks as many-body states moving in the background of lowest energy topological states of gauge fields called instantons
- $T < T_c$: Instantons strongly interacting \rightarrow disordered potential creates bulk modes in the quark Dirac spectrum
- $T > T_c$: Interactions among instantons become short range \rightarrow liquid-like
- $T = 1.15 T_c$: The near-zero and the bulk modes disentangle. the axial part of chiral symmetry is also restored
- Studies also observe jump in the electrical conductivity at the same *T* [A. Amato et. al., 14]. Same is observed in interacting many-electron system in a disordered potential [Altshuler et. al, 04]

DQ C

・ロト ・ 同ト ・ ヨト ・ ヨト

Topological origin of the $U_A(1)$?

- The topological susceptibility is related to $U_A(1)$ breaking through $\chi_t = m^2 \chi_{disc} = m^2 (\chi_\pi \chi_\delta)/4.$
- Characterizing, $\chi_t^{1/4}(T) \sim (T_c/T)^b$

[Petreczky, Schadler, S.S. 16].

[See also C. Bonati et. al., 15, 18, Sz. Borsanyi et. al., 16, F. Burger et. al, 18]

Summary

- We are now able to understand the thermodynamics of chiral symmetry restoration, including its anomalous part from the fundamental theory of strong interactions, QCD.
- It involves subtle interplay of many-body interactions among quarks and disorder due to the gauge fields.
- The precise microscopic origin is not yet understood.
- Interesting if one can observe this from the decay of $\eta' \rightarrow \gamma \gamma (2.3\%), \ \eta' \rightarrow \rho^0 \gamma (30\%)$ meson in the CBM experiment.

Summary

- We are now able to understand the thermodynamics of chiral symmetry restoration, including its anomalous part from the fundamental theory of strong interactions, QCD.
- It involves subtle interplay of many-body interactions among quarks and disorder due to the gauge fields.
- The precise microscopic origin is not yet understood.
- Interesting if one can observe this from the decay of $\eta' \rightarrow \gamma \gamma (2.3\%), \quad \eta' \rightarrow \rho^0 \gamma (30\%)$ meson in the CBM experiment.

- 同下 - 三下 - 三下

Summary

- We are now able to understand the thermodynamics of chiral symmetry restoration, including its anomalous part from the fundamental theory of strong interactions, QCD.
- It involves subtle interplay of many-body interactions among quarks and disorder due to the gauge fields.
- The precise microscopic origin is not yet understood.
- Interesting if one can observe this from the decay of $\eta' \rightarrow \gamma \gamma (2.3\%), \ \eta' \rightarrow \rho^0 \gamma (30\%)$ meson in the CBM experiment.

化晶体 化氯化 化氯化二氯

- We are now able to understand the thermodynamics of chiral symmetry restoration, including its anomalous part from the fundamental theory of strong interactions, QCD.
- It involves subtle interplay of many-body interactions among quarks and disorder due to the gauge fields.
- The precise microscopic origin is not yet understood.
- Interesting if one can observe this from the decay of $\eta' \to \gamma\gamma(2.3\%), \ \eta' \to \rho^0\gamma(30\%)$ meson in the CBM experiment.

- 「同日」 - 三日日 - 三日

Backup: How well are Chiral Ward Identities realized for 2+1 f QCD?

When chiral symmetry is restored

[L. Giusti, G. C. Rossi, M. Testa, 04, HotQCD 1205.3535]

