Proposed fast neutron beam facility at VECC and its possible applications

Kaushik Banerjee Physics Group Variable Energy Cyclotron Centre

- Proton accelerator based neutron source
- Existing/Upcoming facilities in the world
- Applications: Basic and applied
- Possible facility layout
- Neutron beam characteristics
- Electron Linac based neutron source

Some useful neutron generating reactions

Reaction	Q-Value (MeV)	Threshold (MeV)	Minimum E _n (MeV)	Minimum E _{proj} (MeV)
d(d, n)³He	+ 3.269	NA	2.45	0.15
t(d, n)⁴He	+ 17.6	NA	14.1	0.15
⁷ Li(p, n) ⁷ Be	- 1.644	1.881	0.03	2.5
⁹ Be(p, n) ⁹ B	-1.850	2.059	0.02	2.5
⁹ Be(d, n) ¹⁰ B	+ 4.362	NA	5.8	1.5
⁹ Be(γ, n)	- 1.66	1.66		1.66
¹⁸¹ Ta(γ, n)	- 7.57	7.57		7.57 ₀

Estimated global neutron yield in low energy nuclear reaction

S. Anderson et. al, Phys. Rep 654, 1 (2016)

⁷Li(p, n)⁷Be cross section as a function of energy. C. H. Poppe et. al., PRC14, 438 (1976)

Some of the Ion accelerator based neutron source worldwide

Lab	Accelerator	Beam	Target/reactions	comments	Purpose
CPHS China (2013)	Proton Linac	13 MeV 1.25 mA	⁹ Be(p,n) ⁹ B Flux ~ 5x 10 ¹³ n/s		Cold to epithermal for imaging
CYRIC Japan (2004)	Cyclotron	70 MeV, 1μ <i>Α</i>	⁷ Li(p,n)7Be Flux 10 ⁶	Target water cooled, Primary beam bent by 25 ⁰	Quasi- monoenerget ic n energy range ~ 14-80 MeV
iThemba South Africa	Cyclotron	25 – 200 MeV 300 nA- 5 μA	⁷ Li(p,n) ⁷ Be ⁹ Be(p,n) ⁹ B Flux 10 ⁴		Quasi- mono- energetic beam for nuclear phys
KIRAMS South Korea	MC -50 Cyclotron	20 -50 MeV 60 μ <i>Α</i>	⁹ Be(p,n) ⁹ B		Fast n irradiation
NEPIR Italy	Cyclotron	35 – 70 MeV 500 μ <i>Α</i>	Li, Be, W(p, n) Flux 10 ¹³ -10 ¹⁴ (SN) Flux 10 ⁵ -10 ⁷ (FN)	Slow neut 1 - 200 keV, Fast neutron up to 70 MeV	Fast n irradiation

Lab	Accelerator	Beam	Target/Reaction	comments	Purpose
LENS, USA (2005)	RFQ + 2 Linac	13 MeV 25 mA (peak)	⁹ Be(p,n) ⁹ B Flux 2x10 ¹⁰	Methane 4K	Fast n up to 11 MeV
RAON , Korea	LINAC	80 MeV			
TSL Sweden	Cyclotron	11 -175 MeV 10 μ <i>Α</i>	⁷ Li(p,n) ⁷ Be 4.6 x 10 ⁵		Fast n
GANIL France	Superconductin g LINAC	1-40 MeV 50 μ <i>Α</i> Pulse 1μs	⁷ Li (1.5 mm thick) ⁹ Be (0.5 mm thick)	water cooled target	Fast n (1-40 MeV)
NPI, Czech Republic	Cyclotron U- 120M	20-38 MeV 10 μ <i>Α</i>	⁷ Li (2 mm) Flux~ 10 ⁹	Carbon stopper	Quasi- mono- energetic n
FRANZ Germany	Linac	1.87 -2.1 MeV 200 μ <i>Α</i>	⁷ Li(p,n) ⁷ Be Flux 10 ⁹	Neutron energy 1- 200 KeV Pulse beam 0.8m	Nuclear astrophysics

Applications:

Basic research

- Nuclear data generation
- Characterize reaction mechanism
- Impose constrain on nuclear models

Applied Research:

- Material characterization for effect of high *n* flux Nuclear power reactors Accelerator driven system (ADS) Fusion technology
- R&D on neutron detectors and dosimeters
- Production of radio isotopes

Nuclear reactions which can be studied

- (n, Light charged particle)
 - (n, p)
 - (*n*, *α*)
- (n, γ)
- (*n*, fission)
- (*n, n*')
- (*n, xn*)

Three different reaction processes are involved Direct Pre-equilibrium Statistical

TALYS and EMPIRE code

(n,f) Neutron induced fission

Need for more precise and accurate measurements with neutrons

Fast neutron induced fission cross section ²⁴²Pu normalized to ²³⁵U. Comparison of neutron induced fission cross section data with the model calculations using TALYS and EMPIRE.

T. Kogler et. al. , Phys. Rev. C 99, 024604 (2019)

(n, γ) Capture reaction

C. Lederer Woods et. al., Phys Lett B 790, 458 (2019)

(n,xn) reaction

1.1

1.0

0.9

0.8

0.7

0.6 0.5

0.4

0.3 0.2

0.1

0.0

20

30

40

50

Cross-section [barn]

TALYS calculation considering different level density prescriptions

Need experimental data to constrain the model parameters

181Ta(n,4n)178mTa

J. Vrzalova et. al. Nuclear Physics A 1031, 122593 (2023)

- Neutron induced light charged particle emission $(n,p), (n,\alpha)$ reaction
- Data needed to benchmark the nuclear reaction codes and get the global optical model parameters
- M. Avrigeanu et. al., Nuclear Physics A 806, 15 (2008)
- Structural material for fusion reactor and ADS need to be studied

Schematic of the proposed neutron beam facility at the MC

Neutron energy spectra measured at 0^o for 32 MeV proton

X. Ledoux et. al., Eur. Phys. J. A 57, 257 (2021)Y. Uwamino et. al., Nucl. Instr. Methds. A 271, 546 (1988)

p + Li reaction produces more neutrons than p + Be Contribution in quasi-mono-energetic peak is 49% in p + Li and 32% in p+ Be

Melting points of Lithium, Beryllium, Tantalum are 180°C, 1287° and 3020°C

Specifications of the proposed neutron beam facility

- Neutron energy in the range ~13 to 28 MeV [⁷Li(p, n)] Flux for $50\mu A$ proton at the conversion point= 7.2×10^{10} n/s Flux for $50\mu A$ proton at a distance of 4m from the conversion point ~ 10^5 n/cm²s
- 2mm thick Lithium target, primary beam will pass through the target Pulse neutron bean is required for time of flight measurements

Typical arrangement of production target and neutron collimator

C. Dupont et. al., NIMA 256, 197 (1987)

Estimated heat production in the target

Proton	Max	Actual power		Energy loss (MeV)		Energy Remaining	
(MeV)				Thickness			
	(KVV)	тпскпе	55	1 mm 2mm		THICKNESS	
		1 mm	2mm			1 mm 2r	nm
15	0.75	0.08 🥇	0.16	1.56	3.30	13.34	11.61
18	0.9	0.07	0.14	1.32	2.74	16.55	15.15
21	1.05	0.06	0.12	1.15	2.37	19.70	18.49
24	1.2	0.05	0.10	1.03	2.10	22.80	21.74
27	1.35	0.05 🐧	0.10	0.94	1.90	25.87	24.91
30	1.5	0.04	.0.09	0.86	1.74	28.92	28.05

Chilled water cooled 2 mm thick Lithium target would be suitable

Target Facility at NFS GANIL

e⁻ accelerator driven neutron source

Neutron yield distribution from (e, γ) followed by (γ , n) reaction

Neutron yield distribution as a function of electron beam energy

Neutron energy spectrum from Be target irradiated with 9.83 MeV Bremsstrahlung photon beam.

V. L. Chakhlov et. al., NIMA 422, 5 (1999)

Some of the e⁻ accelerator based neutron sources worldwide

Lab	Accelerator	Beam	Target/Reaction	Comments	Purpose
UTCANS –U Tokyo	Electron	Electron 35 MeV, 0.375 kW, 250 mA (peak)	W(γ, n)	Polyethylene moderator 8× 10 ¹¹ n/s	Nuclear data generation
		Electron 3.95 MeV, 0.3 kW 95 mA (peak) 200 Hz	W(γ, n) + Be(γ, n)	Polyethylene moderator 2 ×10 ⁹ n/s	On site non destructive inspection
HUNS Japan	Electron	35 MeV, 30 uA, 1kW, 100 Hz	(e, γ), (γ, n)	Water/couple d methane 1.6 10 ¹² n/s	Radiation effect, detector development, Astrophysics
GELINA, Belgium	Electron	140 MeV, 407 – 75 uA	Rotating Uranium target	Water moderator 1.6×10^{12} - 2.5×10^{13} n/s	Nuclear data, neutron resonance

Lab	Accelerator	Beam	Target/React ion	Comments	Purpose
GLARPI, USA	e ⁻ Linac	60 MeV, 8uA, 12kW, 400 Hz	Tantalum	Water-graphite moderator 10 ¹² n/s	Nuclear data measurement
BELDNS, Argentina	e ⁻ Linac	25 MeV, 20 -30 uA	Lead target water cooled	6 ×10 ¹¹ n/s	Nuclear cross section measu
Pohang Accl Lab, Korea	e ⁻ Linac	80 MeV, 30 -60 mA (peak)	Water cooled tantalum target	2 ×10 ¹² n/s	Nuclear data
KURRI Linac Kyoto Japan	e ⁻ Linac	30 MeV, 1uA, 6kW	Tantalum	Water moderator 3× 10 ¹¹ n/s/cm2	Neutron resonance, neutron imaging
n@BTE Italy	e ⁻ Linac	510 MeV, 0.04 kW, 50 Hz	Tungsten,	Lead / Polyethylene shielding 8 ×10-7 n/cm2/primary beam	Calibration, methodology
nELBE	Superconducti	40 MeV,	Liquid Lead,	10 ¹³ n/s	Transmutatio


```
Schematic of Superconducting Electron Linac
```

```
Input beam parameters :
```

```
Beam energy, current = 300 keV, 10 mA (max),
```

```
2 mA (typical)
```

```
Energy spread = \pm 1.0 keV
```

```
Bunch length = 170 ps FWHM \equiv \pm 20^{\circ} @650
```

```
MHz
```

```
Charge in each bunch = 16 pC (max); 3.2 pC
```

```
(typ.)
```

Normalized emittance (ϵ) =30 pi. mm. mrad

Output beam parameters : Beam energy = 50 MeV Energy spread = 100 keV Beam current = 2 mA (typical) Bunch length = 30 ps Un-normalized emittance (ϵ) =0.4 pi. mm. mrad

S. Anderson et. al, Phys. Rep 654, 1 (2016)

Typical Neutron energy spectra

7Li(p,n) reaction for Ep = 32 MeV

Neutron energy spectrum from Be target irradiated with 9.83 MeV Bremsstrahlung photon beam.

V. L. Chakhlov et. al., NIMA 422, 5 (1999)

X. Ledoux et. al., Eur. Phys. J. A 57, 257 (2021)
Y. Uwamino et. al., Nucl. Instr. Methds. A 271, 546 (1988)

Summary

- Proposed neutron beam facility using MC30 has been discussed.
- Possibility to use electron Linac for the generation of neutron beam is also presented.
- Neutron spectra using two different accelerators would be different.
- A variety of nuclear physics experiments e.g. (n, p), (n, α), (n, xn), (n, γ), and (n, f) can be performed using the proposed neutron beam facility.

Thank you