

8th International Conference on Physics and Astrophysics of Quark-Gluon-Plasma (ICPAQGP-2023)

Physics at High Baryon Density

Recent Results from RHIC Beam Energy Scan Program

Nu Xu

Outline

1) Introduction

2) Selected Recent Results

- Collectivity
- Criticality
- Strangeness production: hyper-nuclei

3) Future Physics at High Baryon Density

CBM Experiment at FAIR

High-Energy Nuclear Collisions and QCD Phase Diagram

Nu Xu

LGT Calculation: QCD Phase Structure

CBM TOF at STAR

CBM participates in RHIC BES-II in 2019 – 2021:

- ► Complementary to CBM program: $\sqrt{s_{NN}} = 3 7.2 \text{ GeV} (760 \ge \mu_B \ge 420 \text{ MeV})$
- Strange-hadron, hyper-nuclei and fluctuation at the high baryon density region

STAR BES-I and BES-II Data Sets

Au+Au Collisions at RHIC											
Collider Runs						Fixed-Target Runs					
	√ S_{NN} (GeV)	#Events	μ_B	Ybeam	run		√ S _{NN} (GeV)	#Events	μ_B	Ybeam	run
1	200	380 M	25 MeV	5.3	Run-10, 19	1	13.7 (100)	50 M	280 MeV	-2.69	Run-21
2	62.4	46 M	75 MeV		Run-10	2	11.5 (70)	50 M	320 MeV	-2.51	Run-21
3	54.4	1200 M	85 MeV		Run-17	3	9.2 (44.5)	50 M	370 MeV	-2.28	Run-21
4	39	86 M	112 MeV		Run-10	4	7.7 (31.2)	260 M	420 MeV	-2.1	Run-18, 19, 20
5	27	585 M	156 MeV	3.36	Run-11, <mark>18</mark>	5	7.2 (26.5)	470 M	440 MeV	-2.02	Run-18, 20
6	19.6	595 M	206 MeV	3.1	Run-11, 19	6	6.2 (19.5)	120 M	490 MeV	1.87	Run-20
7	17.3	256 M	230 MeV		Run-21	7	5.2 (13.5)	100 M	540 MeV	-1.68	Run-20
8	14.6	340 M	262 MeV		Run-14, 19	8	4.5 (9.8)	110 M	590 MeV	-1.52	Run-20
9	11.5	57 M	316 MeV		Run-10, 20	9	3.9 (7.3)	120 M	633 MeV	-1.37	Run-20
10	9.2	160 M	372 MeV		Run-10, 20	10	3.5 (5.75)	120 M	670 MeV	-1.2	Run-20
11	7.7	104 M	420 MeV		Run-21	11	3.2 (4.59)	200 M	699 MeV	-1.13	Run-19
						12	3.0 (3.85)	260 + 2000 M	760 MeV	-1.05	Run-18, 21
										-	-

Most precise data to map the QCD phase diagram $3 < \sqrt{s_{NN}} < 200 \text{ GeV}; 760 > \mu_B > 25 \text{ MeV}$

ICPAQGP2023, Puri, India, February 6 - 10, 2023

Nu Xu

Outline

1) Introduction

2) Selected Recent Results

- > Collectivity
- Criticality
- Strangeness production: hyper-nuclei

3) Future Physics at High Baryon Density

CBM Experiment at FAIR

The emergent properties of QCD matter

 $\partial_{\mu} [(\varepsilon + p)u^{\mu} u^{\nu} - pg^{\mu\nu}] = 0$ $\partial_{\mu} [s u^{\mu}] = 0$

$$\frac{d^2 N}{p_T dp_T d\varphi} = \frac{1}{2\pi} \frac{dN}{p_T dp_T} \left\{ 1 + \sum_{n=1}^{\infty} 2v_n (p_T) \cos[n(\varphi - \Psi_R)] \right\}$$
$$- \frac{v_1}{v_2} \quad \text{Directed flow;} \\- \frac{v_2}{v_2} \quad \text{Elliptic flow;} \quad - \frac{v_3}{v_3} \quad \text{Triangle flow}$$

Anisotropy Parameter v₂

Sensitive to initial/final conditions, EoS and degrees of freedom

Partonic Collectivity at RHIC

- ✓ Low p_T (≤ 2 GeV/c): hydrodynamic mass ordering
- ✓ High p_T (> 2 GeV/c): number of quarks scaling (NCQ)
- u-, d-, and s-quarks flow!
- Partonic Collectivity!
 De-confinement Au+Au collisions at RHIC!

STAR: PRL116, 62301(2016)

Heavy Flavor Hadron D⁰ Collectivity at HRIC

- 1) First application of MAPS technology in high energy collisions, excellent position resolution;
- 2) Measured D^0 , D^{\pm} , D_S^{\pm} , Λ_C and achieved two conclusions:
 - "These results suggest that charm quarks have achieved local thermal equilibrium with the medium created in such (200GeV Au+Au) collisions"
 - Hadronization via quark coalescence process

STAR: PRL113, 142301(14); PRC99, 034908(19); PRL118, 212301(17); PRL123, 162301(19); PRL124, 172301(20)

Equation of State

- 1) Left-plot: Energy dependence of η/s extracted from light-flavor hadron v₂ and v₃. Right-plot: extracted from Bayesian fits to R_{AA} and v₂ at 200GeV collisions.
- 2) Both sides meet at the unity of the scaled temperature.
- 3) The values of η/s increase quickly below $\sqrt{s_{NN}} = 39 \text{ GeV} \rightarrow \text{QGP}$ dominants in higher collision energies.
- 4) Exp. evidence of the QCD transition
- L.P. Csernai, J.I. Kapusta, L.D. McLerran, PRL<u>97 (</u>2006) 152303
- X.Dong, Y.J. Lee & R.Rapp, ARNPS, <u>69</u> (2019) 417
- J.E.Bernhard, J.S.Moreland & S. Bass, Nat. Phys. 15 (2015) 1113
- I. Karpenko, P. Huovinen, H. Petersen, and M. Bleicher, Phys.Rev.**C91**, 064901 (2015).

Strongly-Interacting Low-Viscosity Matter

ICPAQGP2023, Puri, India, February 6 – 10, 2023

Nu Xu

Disappearance of Partonic Collectivity

Au+Au Collisions at RHIC

Δ

ሪን

◊ p E895

UrQMD 3 GeV

Mean-field Cascade

10

Collision Energy $\sqrt{s_{NN}}$ (GeV)

∇ Z=1 hadrons FOPI

20

30

Λ

π

Κ

φ

 Ξ

(a)

QGP

(b)

STAR

10-40%

STAR: PLB827, 137003(2022)

ICPAQGP2023, Puri, India, February

Nu Xu

The emergent properties of QCD matter

Criticality

Conserved Quantities (B, Q, S)

- 1) In strong interactions, baryons (B), charges (Q) and strangeness (S) are conserved;
- Higher order moments/cumulants describe the shape of distributions and quantify fluctuations. They are sensitive to the correlation length ξ, phase structure;
- 3) Direct connection to theoretical calculations of susceptibilities.

Expectations for Models

 Characteristic "Oscillating pattern" is expected for the QCD critical point but the exact shape depends on the location of freezeout with respect to the location of CP
 Critical Region (CR)

- M. Stephanov, PRL107, 052301(2011)
- V. Skokov, Quark Matter 2012
- J.W. Chen, J. Deng, H. Kohyyama, Phys. Rev. <u>D93</u> (2016) 034037

"Nonmonotonic Energy Dependence of Net-Proton Number"

1) HRG and transport model predicted monotonical energy dependence: AMPT, JAM, UrQMD. Suppression at low energy due to conservation;

2) The 3rd and 4th orders: **deviate from the Poisson limit** in the most central collisions! STAR: PRL**126**, 092301(21)

Net-p $\kappa \sigma^2$ Energy Dependence

Net-p in 200 GeV p+p and Au+Au Collisions

- 1) In 200GeV p+p collisions, at high multiplicity, C_5/C_2 and C_6/C_2 become negative as LGT predicted; LHC p+p collisions!
- 2) Direct evidence for the QGP formation in 200GeV central collisions!

HotQCD Collaboration, PRD101, 074502 (2020)

C₄, C₅ and C₆ in Au+Au Collisions

1) C6/C2 < 0 from 200 GeV to 7.7 GeV consistent with LGT prediction for C_5/C_2 and C_6/C_2 ! HotQCD Collaboration, PRD101, 074502 (2020)

2) Direct evidence for QGP formation in central Au+Au collisions 200-39GeV!
3) At 3 GeV: hadronic interactions dominant! STAR: Phys. Rev. Lett., 128, 202303 (2022)

Strangeness and Hyper-Nuclei

Λ-N Interactions and Compact Stars

Baryon Interactions and Hyper-Nuclei

Hyper nuclei and double-Λ hyper-nuclei productions
 Hyper nuclei collectivity (e.g. v₁ and v₂) → *Y-N* and *Y-Y* interactions under finite pressure
 STAR: CPOD21, SQM22, SYP22

Article

Pattern of global spin alignment of ϕ and K^{*0} mesons in heavy-ion collisions

STAR Collaboration*

https://doi.org/10.1038/s41586-022-05557-5

Received: 4 April 2022

Unexpected large ρ_{00} for ϕ -meson: "'Unbelievable' Spinning Particles Probe Nature's Most Mysterious Force" – SCIENTIFIC AMERICAN February 2, 2023

Important for understanding initial strong external fields

Nu Xu

Outline

1) Introduction

2) Selected Recent Results

- > Collectivity
- Criticality
- Strangeness production: hyper-nuclei

3) Future Physics at High Baryon Density

CBM Experiment at FAIR

Future High Rates Experiments

CBM Experiment at FAIR

Nu Xu

CBM Experiment at FAIR

US-CBM Whitepaper

1	QCD Phase Structure and Baryonic Interactions
2	at High Baryon Density
3	D. Almaalol, M. Hippert, J. Noronha-Hostler, J. Noronha, C. Plumberg and E. Speranza
4	University of Illinois at Urbana-Champaign, IL 61801
5	D. Cebra
6	University of California, Davis, CA 95616
7	V. Dexheimer, D. Keane, S. Radhakrishnan, A.I. Sheikh, M. Strickland and C.Y. Tsang Kent State University, Kent, OH 44242
9	X. Dong, V. Koch, G. Odyniec and N. Xu
10	Lawrence Berkeley National Laboratory, Berkeley, CA 94720
11	H.Z. Huang and G. Wang
12	University of California, Los Angeles, CA 90095
13	J.F. Liao
14	Indiana University, Bloomington, IN 47408
15	L. McLerran
16	Institute for Nuclear Theory, University of Washington, Seattle, WA 98195
17	S. Mukherjee
18	Brookhaven National Laboratory, Upton, NY 11973
19	S. Pratt
20	Michigan State University, East Lansing, MI 48824
21	T. Schäfer
22	North Carolina State University, Raleigh, NC 27695
23	C. Shen
24	Wayne State University, Detroit, MI 48201
25	M. Stephanov, G. Wilks and Z.Y. Ye
26	University of Illinois at Chicago, Chicago, IL 60607
27	F.Q. Wang
28	Purdue University, West Lafayette, IN 47907
29	(Dated: July 23, 2022)

QCD Phase Structure and Baryonic Interactions at High Baryon Density

BNL, Duke, INT, IU, KSU, LBNL, MSU, NCSU, OSU, PU, Purdue, RICE, StonyBrook, Texas A&M, UC Davis, UCLA, UC Riverside, UH, UIC, UIUC, UNC, WSU

Nu Xu

US-CBM Whitepaper

QCD Phase Structure and Baryonic Interactions at High Baryon Density

28

Executive Summary

²⁹ We review recent key results from the Beam Energy Scan (BES) program at RHIC. In order to

 $_{30}$ complete the BES physics program including the search for the QCD critical point, the extraction

31 of hyperon-nucleon interaction and the nuclear matter equation of state at high baryon density, the

³² participation in the international collaboration of the CBM Experiment at FAIR is scientifically

³³ necessary and cost effective.

Nu Xu

Summary

ICPAQGP2023, Puri, India, February 6 – 10, 2023

Acknowledgements:

P. Braun-Munzinger, X. Dong, S. Esumi, V. Koch, XF. Luo, B. Mohanty, T. Nonaka, A. Rustamov, K. Redlich, M. Stephanov, J. Stachel, J. Stroth, V. Vovchenko

// BLUE: Theory // RED: Exp., high moment //

Thanks for you attention!