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Introduction
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▶ Understanding the QCD phase diagram is one of the main goals of heavy-ion

collisions.

▶ It is conjectured that a first-order phase transition line exists in QCD phase
diagram which terminates at a critical point [Stephanov, Rajagopal, Shuryak
’98]; under intense investigation at Beam Energy Scan (BES) programs at RHIC.

▶ Most dramatic effects of a critical point should be manifested in fluctuation
observables [Stephanov, Rajagopal, Shuryak, Hatta, Nu Xu, and others].
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Introduction

▶ Several complications: Explosive dynamics of fireball, fluctuations
are not equilibrated. Need models to describe intertwined dynamics
of critical fluctuations and bulk evolution [Stephanov, Yin ’18,

Akamatsu, Teaney et al. ’18, and several others]

▶ It is crucial to accurately model the bulk evolution in regions of
finite net baryon density.

▶ Single collision energy
does not yield a single
phase trajectory.

▶ Different parts of the
fireball have different
(T , µB); they follow
different expansion
trajectories.

▶ Dissipative effects shuffles
trajectories around.
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A swath of phase trajectories (Travis Dore et al. PRD 102 (2020), 074017)

(Dore et al. PRD 102 (2020), 074017)

▶ Results from second-order hydro. Assumptions: Bjorken flow with
Lattice QCD based EoS. (χ = π/(e + P), Ω = Π/(e + P))

▶ But... some hydro trajectories appear to violate the second law of
thermodynamics. Need a deeper understanding. Main motivation of
this work.
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Setup: Hydrodynamics of a weakly interacting QG-gas

▶ Consider a weakly interacting gas of quarks, anti-quarks, and gluons.

▶ Assume a kinetic description in terms of single-particle distribution
functions, f i (x , p); ‘i’ denotes species.

▶ Evolution of f i (x , p) governed by Boltzmann equation:

pµi ∂µf
i = C[f i ]

▶ Approximate collisional kernel of the relaxation type [Andersen &

Witting ’74]:

C[f i ] ≈ −u · pi
τR

(
f i − f ieq

)
,

τR is relaxation time for local equilibration, uµ(x) is local fluid
velocity.

▶ feq are given by Fermi-Dirac (for quarks, anti-quarks) or
Bose-Einstein (for gluons) distributions in fluid rest frame. For eg.,

f qeq = [exp (β(u · p)− α)]−1
, whereβ = 1/T , α = µ/T .
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Hydro from kinetic theory

▶ Using f (x , p) one obtains conserved currents of hydro:

Tµν(x) =
∑
i

∫
dPi p

µ
i pνi f

i = e uµ uν − (P +Π) ∆µν + πµν ,

Nµ(x) =

∫
dPq p

µ
q

(
f q − f q̄

)
= n uµ + nµ

▶ The off-equilibrium corrections to Tµν stem from δf i ≡ f i − f ieq:

Π = −∆αβ

3

3∑
i=1

∫
dPi p

α
i pβi δf i ,

πµν =
3∑

i=1

∫
dPi p

⟨µ
i p

ν⟩
i δf i ,

where A⟨µν⟩ = ∆µν
αβ A

αβ with the double symmetric, transverse, and
orthogonal (to uµ) projector,

∆µν
αβ =

(
∆µ

α ∆ν
β +∆µ

β ∆
ν
α

)
/2−∆µν ∆αβ/3.
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Hydro from kinetic theory

▶ To obtain hydro, one needs to know δf i .

▶ Start from RTA Boltzmann equation,

pµi ∂µf
i = −u · pi

τR

(
f i − f ieq

)
,

and assume small Knudsen number, i.e., τR
∂

∂xµ is of O(ϵ).

▶ Consider a perturbative series,

f i = f i0 + ϵ δf i1 + ϵ2 δf i2 + · · ·

and solve order by order in ϵ:

f i0 = f ieq, δf i1 = − τR
(u · pi )

pµi ∂µf
i
eq,

δf i2 =
τR

(u · pi )
pµi pνi ∂µ

(
τR

u · pi
∂ν f

i
eq

)
.
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Hydro from kinetic theory

▶ Calculating δf i up to second-order in velocity gradients we obtain
evolution equations of bulk and shear stress tensors:

Π̇ = − Π

τR
− βΠ θ − δΠΠ Π θ + λΠπ π

µν σµν ,

π̇⟨µν⟩ = −πµν

τR
+ 2βπ σ

µν + 2π⟨µ
γ ων⟩γ − τππ π

⟨µ
γ σν⟩γ

− δππ π
µν θ + λπΠ Πσµν ,

where the coefficients (βΠ, δΠΠ, λΠπ, · · · ) are functions of (T , µ);
obtained in arXiv:2209.10483 [C.C., Heinz, Schäfer].

▶ Standard definitions: Ȧ = uµ∂µA (time-derivative), θ = ∂µu
µ

(expansion rate), ∇µ = ∆µν ∂ν (space-like derivative), velocity
stress tensor σµν = ∆µν

αβ∇αuβ , vorticity ωµν = (∇µuν −∇νuµ).
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Application: Bjorken flow [J.D. Bjorken, PRD, 27, 140 (1983)]

▶ Bjorken flow is valid during the early stages of ultra-relativistic
heavy-ion collisions.

▶ The fluid is assumed to be homogeneous in (x − y) direction.

▶ The medium expands boost-invariantly along beam (z−) direction:
v x = 0, v y = 0, v z = z/t.

▶ Switch to Milne coordinates
(τ, x⊥, ϕ, ηs) where τ ≡

√
t2 − z2, and

ηs ≡ tanh−1(z/t).

▶ Fluid appears static, uµ = (1, 0, 0, 0).

However, has finite expansion rate,

θ = 1/τ .

Chandrodoy Chattopadhyay ICPAQGP 2023 9



Consequences of Bjorken symmetries

▶ Shear stress tensor has only one independent quantity:
πµν = diag(0, π/2, π/2,−π/τ 2). All functions depend solely on
proper time τ . Also, vorticity ωµν = 0.

▶ The evolution equations for energy density, number density and
shear stress component π are:

de

dτ
= −1

τ
(e + P +Π− π) , (1)

dn

dτ
= −n

τ
, (2)

dΠ

dτ
= − Π

τR
− βΠ

τ
− δΠΠ

Π

τ
+ λΠπ

π

τ
, (3)

dπ

dτ
= − π

τR
+

4

3

βπ

τ
−
(
1

3
τππ + δππ

)
π

τ
+

2

3
λπΠ

Π

τ
, (4)
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Case I: Conformal Bjorken flow

▶ Consider massless quarks and anti-quarks, bulk viscous pressure
Π = 0, relaxation time τR ∝ 1/T .

▶ The evolution equations are,

de

dτ
= −1

τ
(e + P − π) ,

dn

dτ
= −n

τ
,

dπ

dτ
= − π

τR
+

4

3

βπ

τ
−
(
1

3
τππ + δππ

)
π

τ
,

where the coefficients simplify: βπ = 4P/5, τππ = 10/7, δππ = 4/3.

▶ To relate (e, n) → (T , µ) we use the conformal relations,

e(T , µ) = T 4

[
(4gg + 7gq)π

2

120
+

gq
4

( µ

T

)2

+
gq
8π2

( µ

T

)4
]
= 3P(T , µ),

n(T , µ) = T 3

[
gq
6

( µ

T

)
+

gq
6π2

( µ

T

)3
]
.
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Case Ia: Ideal conformal Bjorken flow

▶ We now set shear to zero:

de

dτ
= −1

τ
(e + P) ,

dn

dτ
= −n

τ
,

=⇒ ds

dτ
= − s

τ
,

where entropy density s = (e + P − µn)/T .

▶ Simple scaling solutions: s(τ) ∝ 1/τ ,
n(τ) ∝ 1/τ such that entropy per
baryon s/n is fixed.

▶ Due to conformality, fixed s/n =⇒
fixed µ/T .

▶ s/n increases from right to left in the

phase diagram.
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Case Ib: Viscous conformal Bjorken flow

▶ Include shear in the evolution
dynamics.

▶ Dotted lines initialised with positive
π/(4P); they lie to left of ideal
trajectory. Expected: dissipation leads
to entropy generation.

▶ But dashed lines with (π/4P)0 < 0
move to the right for some time.
Violation of the second law in
hydrodynamics?

▶ Perhaps such trajectories do not exist
in the microscopic (kinetic) theory.
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Viscous dynamics: Conformal kinetic theory

▶ Solve the Boltzmann equation:

∂f i

∂τ
= −

f i − f ieq
τR

▶ Dotted lines initialised with positive
π/(4P); they lie to left of ideal
trajectory.

▶ But dashed lines with (π/4P)0 < 0 lie
to the right for some time.

▶ Such trajectories are also present in
the microscopic theory!
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Toward a resolution

▶ Statement of the second law: ∂µS
µ ≥ 0.

▶ Thus far we have assumed Sµ = seq u
µ with seq = (e + P − µn)/T .

▶ But is it justified when the system deviates substantially from local
equilibrium?

▶ Need an expression for non-equilibrium entropy.
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Non-equilibrium entropy current

▶ Start from Boltzmann’s H-function,

Sµ = −
∑
i

gi

∫
dP pµ ϕi [f

i ],

where i = 1, 2, 3 labels quarks, anti-quarks, and gluons. The
functions ϕi [f

i ] are given as,

ϕi [f
i ] = f i ln(f i )− 1 + θi f

i

θi
ln(1 + θi f

i ),

with θ1 = θ2 = −1 (Fermi-Dirac) and θ3 = 1 (Bose-Einstein)

▶ Writing f i = f ieq + δf i , we expand entropy current to second-order

in δf i :

Sµ = seq u
µ − αnµ −

∑
i

gi

∫
dP pµ

ϕ
′′

i [f
i ]

2
(δf i )2.
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Second-order conformal entropy current

▶ δf i obtained by perturbatively solving the RTA Boltzmann equation;
for example,

δf q

Fq
eq

= Aµν
p πµν + B pµnµ, whereFq

eq = f qeq
(
1− f qeq

)
,

[Jaiswal, Friman, Redlich, ’15]

▶ The second-order entropy current is found to be,

Sµ = seq u
µ − α nµ − β

4βπ
uµ παβ παβ + cnn u

µ nα nα + cnπ π
µα nα;

the coefficients (βπ, cnn, cnπ) are derived in arXiv:2209.10483 [C.C.,

Heinz, Schäfer].

▶ Note, entropy flux in fluid rest frame, S⟨µ⟩ = ∆µ
νS

ν is not
necessarily along baryon diffusion. In Bjorken flow,

s = seq −
3β

8βπ
π2.
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Second law in conformal hydrodynamics

▶ Brown curves (lower panel) denote
evolution of seq/n.

▶ For dotted brown curves (positive
initial shear), seq/n always increase.

▶ For the dashed brown curves, (seq/n)
decreases initially. However, the
dashed curves start from a lower total
s/n.

▶ The total entropy per baryon of the
dashed curves never decrease.

▶ All the hydro trajectories are
consistent with the second law!
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Second law in conformal kinetic theory

▶ Red curves (lower panel)
denote evolution of seq/n.

▶ For dotted red curves (positive
initial shear), the seq/n always
increase.

▶ For the dashed red curves,
seq/n decreases initially.

▶ Key conclusion: Second law
demands (i) s/n ≤ seq/n and
(ii) d(s/n)/dτ ≥ 0; but seq/n
need not increase.
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Coming back to the phase trajectories of Dore et al.

(T. Dore et al. PRD 102 (2020), 074017)

▶ Assumption: Second-order hydro for Bjorken flow with Lattice QCD
based EoS. (χ = π/(e + P), Ω = Π/(e + P))

▶ Is it also possible that the chemical potential of an expanding
quark-gluon gas increases instead of decreasing?
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Case II: Non-conformal dynamics

▶ We break conformal symmetry by making the quarks and
anti-quarks massive =⇒ non-vanishing bulk viscous pressure.
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Case IIa: Ideal non-conformal Bjorken flow

▶ Ideal hydro for Bjorken flow:

de

dτ
= −1

τ
(e + P) ,

dn

dτ
= −n

τ
.

▶ The conversion from (e, n) → (T , µ) is implemented by Landau
matching:

e =
∑
i

∫
d3pi
(2π)3

E i
p f

i
eq(T , µ),

n =

∫
d3p

(2π)3
(
f qeq(T , µ)− f q̄eq(T , µ)

)
.

▶ For purposes of demonstration we chose a large quark and
anti-quark mass, mq = mq̄ = 1 GeV.
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Case IIa: Ideal conformal vs non-conformal

▶ Unlike conformal case, constant s/n does not imply constant µ/T .
Non-conformality leads to s/n = f (µ/T ,m/T ).
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▶ At high T, EoS dominated by quarks, anti-quarks, and gluons.

▶ At low T, EoS dominated by quarks.

▶ As T → 0, Fermi statistics of quarks imply µ → m.
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Case IIb: Viscous non-conformal hydro arXiv:2209.10483 [C.C., Heinz, Schäfer]
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▶ Solid trajectories lie to right of
ideal curves.

▶ They have increasing µ at early
times!

▶ Problem or feature?

▶ Evolution of shear and bulk stresses:
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Non-conformal kinetic theory arXiv:2209.10483 [C.C., Heinz, Schäfer]
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Second law in non-conformal kinetic theory [C.C., Heinz, Schäfer]

▶ Dotted curves (lower panel) denote
evolution of seq/n.

▶ Although seq/n decreases, the total
s/n computed using Boltzmann’s
H-function does not.

▶ 3 distinct regimes of s/n evolution:
▶ early increase of s/n : expansion

driven isotropization,

▶ intermediate plateau where
s/n ≈ seq/n (free-streaming),

▶ eventual merging with seq/n
(interaction driven).
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Viscous cooling! arXiv:2209.10483 [C.C., Heinz, Schäfer]

▶ Usually dissipative fluxes causes viscous heating =⇒ Temperature
falls slower than in ideal evolution.
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▶ However, in dissipative dynamics, temperature may decrease faster
than even in the ideal case.

▶ In Bjorken, this happens when the effective longitudinal pressure
PL > P =⇒ π − Π < 0. A manifestation of decreasing seq/n:

d(seq/n)

dτ
=

π − Π

τ0 n0 T
.
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Summary and Conclusions

▶ Derived second-order hydrodynamics of a weakly interacting
non-conformal gas of quarks and gluons using kinetic theory.

▶ Dissipative fluxes were found to shuffle around phase trajectories;
they exhibit substantial sensitivity to initial shear and bulk viscous
stresses.

▶ Some of the hydrodynamic trajectories appear to the violate the
second law at first sight. By deriving a second-order conformal
entropy current, it was shown that such trajectories were in
complete agreement with the second law.

▶ An in-depth analysis of non-equilibrium entropy production in
kinetic theory was presented.

▶ A novel effect (viscous cooling) was pointed out where a dissipative
system cools faster than in the inviscid case.

▶ It would be important to explore these features in flow profiles with
less restricted symmetries.

Chandrodoy Chattopadhyay ICPAQGP 2023 28



Backup Slide 1: Applicability of classical kinetic theory [Jeon

and Heinz, arXiv:1503.03931 (2015)]

▶ Hydro formulated as a series in velocity gradients:
πij ∼ η∂iv j , Π ∼ −ζ∂ · v .

▶ Three scales: Two microscopic: lmfp ∼ 1/(σ vn), thermal
wavelength lth ∼ 1/T , one macroscopic 1/L ∼ ∂ · u.

▶ lmfp/lth ∼ η/s, ζ/s, Tκ/s

▶ Hydro applicable whenever microscopic and macroscopic
scales are well-separated: lmfp ∂ · u ≡ Kn < 1
▶ Dilute gas regime: lmfp/lth ∼ η/s ≫ 1; Weakly coupled regime,

Boltzmann equation applicable (on-shell particles).

▶ Dense gas regime: η/s ∼ 1; quasi-particle description in terms
of Wigner functions.

▶ Liquid regime: η/s ≪ 1; strong-coupling regime, no valid
kinetic description.
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Backup slide 2: Conformal hydro vs kinetic theory

▶ Hydrodynamic (second-order) entropy per baryon vs exact entropy
per baryon obtained using kinetic theory:
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▶ Hydro over-estimates the entropy per baryon produced by ∼ 10
percent.
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Backup 3: Non-equilibrium entropy

▶ The canonical entropy S = −
∑

i pi ln(pi ) for a continuous
distribution:

S = −
∫

d3Nx d3Np

N!
ρ ln(ρ),

where,

ρ(x1, · · · , xN , p1, · · · , pN) =
exp(−βHN(x1, · · · , xN , p1, · · · , pN))

Z (T ,V ,N)

▶ Due to weak interaction,

HN =
∑
i

Hi , Z (T ,V ,N) = Z (T ,V , 1)N = V NnN/N!,

where n is number density. Thus,

S = − β V N

Z (T ,V , 1)N

∫
d3Np H(p) exp(−βH(p))− ln(Z (T ,V ,N))
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Backup 4: Non-equilibrium entropy

▶ For large N, ln(Z (T ,V ,N)) ≈ N. Thus,

S = V

∫
d3p (β H(p) feq + feq) ,

and the entropy density:

s = −
∫

d3p feq (ln(feq)− 1) .

▶ Out of equilibrium, replace feq → f . Relativistic version,

s = −
∫

dP (u · p) f (ln(f )− 1) .
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