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Introduction
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» Understanding the QCD phase diagram is one of the main goals of heavy-ion
collisions.

» It is conjectured that a first-order phase transition line exists in QCD phase

diagram which terminates at a critical point [Stephanov, Rajagopal, Shuryak

'98]; under intense investigation at Beam Energy Scan (BES) programs at RHIC.
» Most dramatic effects of a critical point should be manifested in fluctuation

observables [Stephanov, Rajagopal, Shuryak, Hatta, Nu Xu, and others].
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Introduction

» Several complications: Explosive dynamics of fireball, fluctuations
are not equilibrated. Need models to describe intertwined dynamics
of critical fluctuations and bulk evolution [Stephanov, Yin '18,
Akamatsu, Teaney et al. '18, and several others]

» |t is crucial to accurately model the bulk evolution in regions of
finite net baryon density.

» Single collision energy
does not yield a single 800 13
phase trajectory. 250 |

The Phases of QCD
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A swath of phase trajectories (travis Dore et 2l PRD 102 (2020), 074017)
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(Dore et al. PRD 102 (2020), 074017)
» Results from second-order hydro. Assumptions: Bjorken flow with
Lattice QCD based EoS. (x = 7/(e + P), Q =N/(e + P))

» But... some hydro trajectories appear to violate the second law of
thermodynamics. Need a deeper understanding. Main motivation of
this work.
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Setup: Hydrodynamics of a weakly interacting QG-gas

» Consider a weakly interacting gas of quarks, anti-quarks, and gluons.

» Assume a kinetic description in terms of single-particle distribution
functions, f'(x, p); ‘i’ denotes species.

» Evolution of f/(x, p) governed by Boltzmann equation:
pl0uF =l

» Approximate collisional kernel of the relaxation type [Andersen &
Witting '74]:

i Y Pi (gi_ g
Clf'l = — p. (' —1f2,),

Tg is relaxation time for local equilibration, u#(x) is local fluid
velocity.

> f., are given by Fermi-Dirac (for quarks, anti-quarks) or
Bose-Einstein (for gluons) distributions in fluid rest frame. For eg.,

fo = [exp (B(u - p) — )], where 8 =1/T, 0= p/T.
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Hydro from kinetic theory
» Using f(x, p) one obtains conserved currents of hydro:
T(x)=>_ /dP,- pl'pf ' =eut u” — (P +T) A" + 7,
NH(x) = /qu Py (fq — fq) =nu* + n"

» The off-equilibrium corrections to T*” stem from §f' = f' — fefq:

Do
N=-=—2 dp; pf p! 6f!
2 ;/ pi pj of",

3
T — Z / dP, p’<# pr> (Sfi7
i=1

where AlH¥) = AZ; A®B with the double symmetric, transverse, and
orthogonal (to u*) projector,

AMY = (Ag NG+ A Ag) /2~ AP Ayg/3.
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Hydro from kinetic theory
» To obtain hydro, one needs to know SFi.
» Start from RTA Boltzmann equation,

i U-Pi (i gi
pl o f =— - (' —1fl,),

and assume small Knudsen number, i.e., 7 8% is of O(e).
» Consider a perturbative series,
fl=1f +edfi +0f; +
and solve order by order in e€:

i i i R i
ﬂ):feqv 5f1:_(u P) laufem

S5E = fpra, (—R-a,fi ).
2 g PO <u-p;a e")
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Hydro from kinetic theory

» Calculating §f' up to second-order in velocity gradients we obtain
evolution equations of bulk and shear stress tensors:

. N
N=———=0n0—5nn N0+ Anz 7 o0,
TR
g
)y — T + 28, " + 27&(/“ W = m(/u Pkt
TR

— S T O+ Ay Mo,

where the coefficients (5n, dnm, Anx, - - - ) are functions of (T, u);
obtained in arXiv:2209.10483 [C.C., Heinz, Schafer].

> Standard definitions: A = u",A (time-derivative), 6 = 9, u*
(expansion rate), V# = A 9, (space-like derivative), velocity
stress tensor o/ = ALYV uP, vorticity wi = (VFu” — VVut).
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Application: Bjorken flow 1o sjorken, prD, 27, 140 (1983)]

» Bjorken flow is valid during the early stages of ultra-relativistic
heavy-ion collisions.

» The fluid is assumed to be homogeneous in (x — y) direction.

» The medium expands boost-invariantly along beam (z—) direction:
v¥=0, v =0, vi =2z/t.

» Switch to Milne coordinates

(7, x1, d,ms) where 7 = +/t? — 22, and
ns = tanh ™1 (z/t). =t

z/t=const.

» Fluid appears static, u* = (1,0,0,0).
However, has finite expansion rate,
0=1/t.

............................................................
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Consequences of Bjorken symmetries

» Shear stress tensor has only one independent quantity:
7 = diag(0, 7 /2, /2, —m/72). All functions depend solely on
proper time 7. Also, vorticity w*” = 0.

» The evolution equations for energy density, number density and
shear stress component 7 are:

E
dr
@
dr
dn
dr
dm

=

=——(e+P+N—m), (1)
n

= T (2)
-
M M

:—*—@—%n*%—)\nw ; (3)
TR T
™ 4 5, 1 T 2 I

= - 5 — |\ 5 7Tnm 57r71' 7)\71' > 4
TR 3 (3T + ) +3 n (4)

Chandrodoy Chattopadhyay ICPAQGP 2023 10



Case |: Conformal Bjorken flow

» Consider massless quarks and anti-quarks, bulk viscous pressure
M =0, relaxation time 7g < 1/ T.

» The evolution equations are,

de 1 dn n
=2 pP_ - __Z
dr T(e+ ), dr T’
drm T 408, 1 T
- = 35— |\ 5 Tnn 57r7r )
dr TR+3 T <3T + ) T

where the coefficients simplify: 8, = 4P/5, Tpr = 10/7, 6 = 4/3.

> To relate (e, n) — (T, ) we use the conformal relations,

o Talr g (1)7 g ()

wn-rls )& E)]

e(T,pu)=T* =3P(T,p),
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Case la: Ideal conformal Bjorken flow

» We now set shear to zero:

de
dr
ds
— ar

Lesp),

S0

where entropy density s = (e + P — un)/T.

» Simple scaling solutions: s(7) x 1/,

n(7) o< 1/7 such that entropy per
baryon s/n is fixed.

» Due to conformality, fixed s/n =

fixed p/T.

» s/n increases from right to left in the

phase diagram.
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Include shear in the evolution
dynamics.

Dotted lines initialised with positive
7/ (4P); they lie to left of ideal
trajectory. Expected: dissipation leads
to entropy generation.

But dashed lines with (7/4P)o < 0
move to the right for some time.
Violation of the second law in
hydrodynamics?

Perhaps such trajectories do not exist
in the microscopic (kinetic) theory.
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Case Ib: Viscous conformal Bjorken flow
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Solve the Boltzmann equation:

of

of _ f"—fe’;,
or

TR
Dotted lines initialised with positive

7w /(4P); they lie to left of ideal
trajectory.

But dashed lines with (7/4P)o < 0 lie
to the right for some time.

Such trajectories are also present in
the microscopic theory!
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Viscous dynamics: Conformal kinetic theory
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Toward a resolution

» Statement of the second law: 9,5 > 0.
» Thus far we have assumed S* = s.q u* with soq = (e + P — pun)/T.

» But is it justified when the system deviates substantially from local
equilibrium?

» Need an expression for non-equilibrium entropy.
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Non-equilibrium entropy current

» Start from Boltzmann's H-function,
S — - Zg,-/de# G,
where i = 1,2,3 labels quarks, anti-quarks, and gluons. The
functions ¢;[f'] are given as,

14+ 6;f
0;

oi[f'] = FHin(f) — In(1+ 6,7,

with 6; = 6, = —1 (Fermi-Dirac) and 65 = 1 (Bose-Einstein)

» Writing f/ = fefq + 6f7, we expand entropy current to second-order
in 0f':

i 1F] (s
St = seq Ut — ant —Zg;/de”T((Sf )2
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Second-order conformal entropy current

» &f' obtained by perturbatively solving the RTA Boltzmann equation;
for example,

of9
Feq

[Jaiswal, Friman, Redlich, '15]

_“4 T + Bptng, Where]-'q —fq ( _fq)7

eq

» The second-order entropy current is found to be,

St =sequt —ant — —ut 7B Tap + Con UP N No + Cprx T Noy;

s

the coefficients (Bx, Can, Car) are derived in arXiv:2209.10483 [C.C.,
Heinz, Schafer].

> Note, entropy flux in fluid rest frame, S = A#S¥ is not
necessarily along baryon diffusion. In Bjorken flow,

3ﬂ 7T2.

S =Seq— =
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Second law in conformal hydrodynamics
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Second law in conformal kinetic theory
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» Key conclusion: Second law )
demands (i) s/n < seq/n and
(ii) d(s/n)/dT > 0; but s.q/n
need not increase.

Chandrodoy Chattopadhyay ICPAQGP 2023 19



Coming back to the phase trajectories of Dore et al.
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» Assumption: Second-order hydro for Bjorken flow with Lattice QCD
based EoS. (x = /(e + P), Q=TM/(e+ P))

» Is it also possible that the chemical potential of an expanding
quark-gluon gas increases instead of decreasing?
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Case Il: Non-conformal dynamics

> We break conformal symmetry by making the quarks and
anti-quarks massive = non-vanishing bulk viscous pressure.
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Case lla: Ideal non-conformal Bjorken flow

» Ideal hydro for Bjorken flow:

de 1
L Z(e+P
dr T(e+ ),
dn _ _n

dr T

» The conversion from (e, n) — (T, u) is implemented by Landau
matching:

d ! I £l
e—Z/ gl;aEpfeq 1),
3
— [ s (T~ (T ).

» For purposes of demonstration we chose a large quark and
anti-quark mass, mg = mg = 1 GeV.
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Case lla: Ideal conformal vs non-conformal

» Unlike conformal case, constant s/n does not imply constant i/ T.
Non-conformality leads to s/n=f(u/T,m/T).

0.9 T T 0.9 T T T T T
o8l s/n=14.8 osh s/n=13
oal s/n=23.8 s/n=8.2 076 sfn =20 s/n i’?’
= =125 = g
06 [s/n=63.5 s/n=12.5 06l s/n=10
Z 05t 2 05t
Q Qo
=04t 1 To4f
&= ideal evolution =
03 (non-conformal) | 031
02r 021 ideal evolution (conformal)
0.11 0.1
0 I I I I I 0 I I I I
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
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» At high T, EoS dominated by quarks, anti-quarks, and gluons.
» At low T, EoS dominated by quarks.
» As T — 0, Fermi statistics of quarks imply . — m.
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Case Ilb: Viscous non-conformal hydro arXiv:2209.10483 [C.C., Heinz, Schifer]

| Non-conformal hydro

T, = 5C/T
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» Solid trajectories lie to right of
ideal curves.

» They have increasing p at early
times!

» Problem or feature?
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» Evolution of shear and bulk stresses:
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Non-conformal kinetic theory arxiv:2200.10483 [C.C., Heinz, Schifer]

» Evolution of shear and bulk stresses:

02F T w ™
ol /7
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m =1GeV %)
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Second law in non-conformal kinetic theory (c ¢ teins, schired

» Dotted curves (lower panel) denote
evolution of s.q/n.

» Although seq/n decreases, the total
s/n computed using Boltzmann's
H-function does not.

» 3 distinct regimes of s/n evolution:

>

>

early increase of s/n : expansion

driven isotropization,

intermediate plateau where
s/n =& seq/n (free-streaming),

eventual merging with seq/n
(interaction driven).
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Viscous cooling! arxiv:2200.10483 [C.C., Heinz, Schifer]

» Usually dissipative fluxes causes viscous heating = Temperature
falls slower than in ideal evolution.
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» However, in dissipative dynamics, temperature may decrease faster
than even in the ideal case.

» In Bjorken, this happens when the effective longitudinal pressure
P. > P = 7 —TI1<0. A manifestation of decreasing seq/n:

d(seq/n)  m—T

dr To No T
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Summary and Conclusions

>

>

Derived second-order hydrodynamics of a weakly interacting
non-conformal gas of quarks and gluons using kinetic theory.

Dissipative fluxes were found to shuffle around phase trajectories;
they exhibit substantial sensitivity to initial shear and bulk viscous
stresses.

Some of the hydrodynamic trajectories appear to the violate the
second law at first sight. By deriving a second-order conformal
entropy current, it was shown that such trajectories were in
complete agreement with the second law.

An in-depth analysis of non-equilibrium entropy production in
kinetic theory was presented.

A novel effect (viscous cooling) was pointed out where a dissipative
system cools faster than in the inviscid case.

It would be important to explore these features in flow profiles with
less restricted symmetries.
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Backup Slide 1: Applicability of classical kinetic theory [ion

and Heinz, arXiv:1503.03931 (2015)]

» Hydro formulated as a series in velocity gradients:
m ~nd'v, M~ —(0-v.

» Three scales: Two microscopic: Img ~ 1/(o vn), thermal
wavelength /i, ~ 1/ T, one macroscopic 1/L ~ 0 - u.

> /mfp/lth ~ 77/57 C/S> TH/S

» Hydro applicable whenever microscopic and macroscopic
scales are well-separated: /ng0-u=Kn <1

» Dilute gas regime: Ins/len ~ 1n/s > 1; Weakly coupled regime,
Boltzmann equation applicable (on-shell particles).

» Dense gas regime: 7/s ~ 1; quasi-particle description in terms
of Wigner functions.

> Liquid regime: n/s < 1; strong-coupling regime, no valid
kinetic description.
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Backup slide 2: Conformal hydro vs kinetic theory

» Hydrodynamic (second-order) entropy per baryon vs exact entropy

per baryon obtained using kinetic theory:
40 —————— —
dotted: (7E/4p)0 =02
i dashed: (7t/4p)0=— 0.3

T T T
0.8 | magenta & black: , blue & green: |
kinetic theory /

kinetic theory . .

dotted: (1(/4p)0 =02
dashed: (1[/4p)“ =-0.3

» Hydro over-estimates the entropy per baryon produced by ~ 10
percent.
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Backup 3: Non-equilibrium entropy

» The canonical entropy S = — 3", p; In(p;) for a continuous

distribution:
d3Nx d3Np
S= —/TP In(p),

where,

exp(iﬂHN(Xla cr XN, Pyt 7PN))
Z(T,V,N)

p(X17"' s XN, P1y apN):

» Due to weak interaction,

Hy =Y Hi, Z(T,V,N)=2Z(T,V, )" =Vv"a"/NI,

where n is number density. Thus,

A%

3= ZTV A

[ o H(p) expl~5H(p)) ~ IW(Z(T. V. )
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Backup 4: Non-equilibrium entropy

» For large N, In(Z(T,V,N)) =~ N. Thus,

S=V /d3P (BH(p) feq + feq) »

and the entropy density:

s=— [ iy (i) - 1).

» Out of equilibrium, replace f.q — f. Relativistic version,

s:—/dP (u-p) f (In(f)—1).
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