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We want to determine a set of model parameters that characterize the 
system formed in the ultra-relativistic heavy ions by comparing model 
outputs with the experimental results.

But, It's Not So Simple 

Why This Approach?

From collision to particle dedication different stages are described by different 
physics/models. 

Need huge CPU time, sometimes beyond our affordable range.

● Calculation the centrality dependence of bulk observables requires 
O(10 4 ) minimum-bias events @ O(10-1 )/ hours.

● O(10 3 ) hours per parameter sample. 
● Statistically significant sample size  > O(10 6).
● Total computation time >O(10 9 ) hours ~O(10 5 ) years.

Experimental measurements always contain some noise.

A model often has multiple inputs-outputs and usually carries complex 
interrelationships.



  

➔  Minimisation of the CPU time.

➔  Taking care of the correlations between parameters.

➔  Taking care of the different uncertainties in an efficient way.

➔  Finally, want to build a data-driven technic that is model-independent.

We Want To Achieve



  

Viscous Blast-Wave Model

A Generalized blast-wave model that includes viscous effects by employing a 
viscosity-based survival scale for geometrical anisotropies formed in the early 
stages of relativistic heavy-ion collisions was developed by Amaresh Jaiswal 
and Volker Koch.

The model has six parameters

● Freeze-out temperature, T
f

● Radial flow velocity,
●  

● Three other constants  : m,             and 1
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Latin Hypercube Sampling (LHS)

Designe The Parameter  Space

If sets of outputs of a model, F 
are given, it will predict output  
for any arbitrary input parameter.

Bayesian Calibration

Set of outputs of a model  are 
given. Now, what are the model 
parameters for the given output?

 Gaussian Process Regression (GPR) Principal Component Anaayies (PCA)
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Experimental data
Heavy-ion collision 

Observables 

Markov chain Monte Carlo (MCMC)

A dimensionality 
reduction techniques

Supervised Unsupervised



  

Let, the model is to be evaluated on a set of m training points 
X(x1.....Xm), in n-dimensional parameter space.

Now, how to generate efficient design points? , i.e., simultaneously 
optimize emulator accuracy and computation time. 

Possible Strategies.

i) Factorial Design: k points in each of n dimensions;  kn total points.

For k = 20, n = 5 No. Design  Points = 3200000; Fails in high dimensions. 

ii) Random Points :  A Monte Carlo approach, is good when the design points are 
large. 

iii) Latin Hypercube Sampling:  The most commonly used sampling algorithm.

A semi-random, space-filling design algorithm.

With low design points, often leave large regions with no points.

Construction of Design Points  / Latin Hypercube Sampling (LHS)

Ref: Latin Hypercube Sampling By Jaroslav



  

LHS MCS

Two Dimension

MCS: New sample points are generated 
without taking into account previously 
generated sample point.

In a statical sampling, a square grid containing sample position is a Latin Square if and only 
if there is only one sample in each row and column.

LHS: Remember which rows and columns 
 have already been occupied by a sample 
point.

Latin Hypercube Sampling (LHS)

Monte Carlo  Vs Latin Hypercube

We use 250 Latin hypercube design point 
across the n = 6 dimensional  parameters 
space.



  

Machine Learning A Probabilistic Perspective 
by Kevin P. Murphy

If a vector X(x
1
.....X

n
)  has a 

multivariate normal distribution then 
any subset of X also has a 
multivariate normal distribution.

An important property of MVN

An Important Property Of MVN



  

Multivarient Normal Distribution

Where the covariance matrix      is a positive semidefinite matrix   

P-dimensional Gaussian PDF for the 
random vector X = [X

1
 . . , X

P
] has the 

following form:



  

Gaussian Process Regression 

Ref: http://www.gaussianprocess.org

Now, If we have data set!

Recal



  

Centality: 0-5%

Centality: 20-30%



  

Gaussian processes are fundamentally scalar functions, i.e., it take  
[X]

mxn  
input and gives m output. 

But a model may take [X]
mxn  

input  and computes [Y]
mxp  

output.

An obvious workaround is to use independent GP for each of the p outputs.
But, we will dissipate the correlated information between different 
observables.

Way out of this is PCA!!

Principal Component Analysis (PCA): A dimensionality reduction technic (without 
loss of too much information), achieved by redistributing the data (Linear 
Transformation)  in a set of new orthonormal basis.

M  Design Points    N  Input Parameters

P are the different observables. 

 

New basis are the eigenvector of the covariance matrix of output  YTY

Principal Component Analayis (PCA)

Ref: M. E. Tipping and C. M. Bishop, “Mixtures of Probabilistic Principal Component Analyzers



  

Step 1: Standeration of the model output Matrix  [Y]
mxp, 

i.e. centering and 

scaling each of the collum of Y to zero mean and unit variance.

U and V are the orthogonal matrices (UTU=I & VTV=I) known as left 
and right Singular Vectors respectively and Σ is a diagonal matrix 
containing the Singular Values.

Step 2: Eigen Value decomposition of covariance matrix  Y
T
Y

Using Singular Value Decomposition (SVD) of the data matrix Y.

V is the eigenvectors of YTY and Σ2 contains eigenvalues on the 
diagonal.

Step 3:  PCA transformation of the data, i.e., Z= YV,   Z is mxp matrix.

Step 4:  Use p independent GP emulators for each of the columns of Z. 

 Step 5: Transformed back to physical space by Y= VZ.

Numerical Steps For PCA



  

If the eigenvalue and corresponding eigenvector are in decreasing order.

With cause of the minimum loss of information, we can take only 
the first few principal components and can neglect the rest.

Eigenvector Matrix:Output Matrxi:

PCA Transformed Output:

Dimentional Reduction

 First few principal components contained the maximum Variance or Information. 



  

PCA Test

SW=Shapiro–Wilk test , p>0.5 is normal 



  

Single Centrality All CentralityPCA Results



  

Calibration

Extraction of model parameters by comparing experimental data

The new evidence should not 
completely determine your belief 
in a vacuum, it should update 
prior believe.

Model  Result

Posterior Distribution Prior Distribution

Likelihood

X : Parameter Vector and D represent all the collected data model + 
Experiment

Experiment Result

Bayesian inference



  

Likelihood

Uniform Prior Distribution

It is better to deal with the log Prior

Uniform Prior Distribution

We Maximize the log 
probability using MCMC  
Algorithm 



  

We Run MCMC on 

Error Estimation 

Statistical uncertainty are 
uncorrelated

Systematic uncertainty usually has a correlation structure 

C is the midpoint of the pT Bin and l=1

Σ  = Predictive 
Covariance in PC space 
and V is the PCA 
transformation matrix



  

MCMC Result  



  
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

10 1

100

101

102

0.25

100

101

PT (GeV)

Pion

Kaon

Proton



  



  

● NumPy 
● SciPy
● scikit-learn
● H5py
● matplotlib 
● emcee 

Programming libraries and Sources

Other Sources: Reading material 

Open-Sources Python Libraires

 Bayesian analysis of computer code outputs: A tutorial by A. O’Hagan
 Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu
 https://arxiv.org/abs/1902.11082.
 An Intuitive Tutorial to Gaussian Processes Regression Jie Wang.
 Bayesian estimation of the specific shear and bulk viscosity of quark–
gluon plasma/ Nat. Phys. 15, 1113–1117 (2019).

https://arxiv.org/abs/1902.11082
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