Heavy-flavour production measurements in pp and Pb-Pb collisions in ALICE

Shreyasi Acharya

On behalf of the ALICE Collaboration

Laboratoire de Physique de Clermont, France

ICPAQGP-2023: International Conference on Physics and Astrophysics of Quark Gluon Plasma

07-10 Feb 2023 – Blue Lily Beach Resort, Puri, Odisha

Heavy quarks as probes for characterizing relativistic collisions

Heavy quarks (charm, beauty)

 $\triangleright\,$ are produced at the early stages of the collision ($\tau_{\rm c}\sim$ 0.08 fm/c, $\tau_{\rm b}\sim$ 0.02 fm/c) via hard scattering

 $\triangleright\,$ have large bare masses ($m_{\rm c}\sim 1.3~{\rm GeV}/c^2,~m_{\rm b}\sim 4.2~{\rm GeV}/c^2)$

pp collisions:

- Test perturbative QCD calculations
- Baseline reference for heavy-ion studies
- Study hadronization mechanisms in vacuum [See talk by R. Bala]

Pb–Pb collisions:

- Heavy quark interaction with the medium constituents
 - \rightarrow Studied through nuclear modification factor ($R_{\rm AA})$ and anisotropic flow ($v_2,~v_3,~...)$ measurements
- Study hadronization mechanisms in presence of a medium

Open heavy-flavours with the ALICE detector

[P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)]

Open heavy-flavor production discussed in this talk via:

$$\begin{split} \mathbf{D^0}(\mathbf{c}\bar{\mathbf{d}}) &\to \mathrm{K}^-\pi^+ \\ \mathbf{D}^+(\mathbf{c}\bar{\mathbf{u}}) &\to \mathrm{K}^-\pi^+\pi^+ \\ \mathbf{D}^{*+}(\mathbf{c}\bar{\mathbf{d}}) &\to \mathrm{D}^0\pi^+ \end{split}$$

 $\mathbf{D}^+_{\mathbf{s}}(\mathbf{c}\bar{\mathbf{s}})
ightarrow \mathrm{K}^-\mathrm{K}^+\pi^+$

$$egin{aligned} oldsymbol{\Lambda}^+_{f c}({f udc}) & o {f pK}^-\pi^+ \ & o {f pK}^0_{f s} \end{aligned}$$

Nuclear modification factor (R_{AA}) in Pb–Pb

Prompt D^{0,+,*+}

- Suppression increases from peripheral to central collisions (for $p_{\rm T}\gtrsim$ 3 GeV/c)
- $\rightarrow~$ Due to increasing density, size, and lifetime of medium
- $R_{\rm pPb}$ compatible with unity within uncertainties
- \rightarrow Suppression observed in Pb-Pb collisions is to due final-state effects

[ALICE, arxiv:2110.09420, JHEP 01 (2022) 174]

Nuclear modification factor (R_{AA}) in Pb–Pb

• Hint of a hierarchy: $R_{AA}(\Lambda_c^+) > R_{AA}(D_s^+) > R_{AA}(D)$, for $4 < p_T < 8 \text{ GeV}/c$ in most central collisions

 \rightarrow Indication that hadronization occurs also via *coalescence*? Interplay with *radial flow*?

More precise measurements needed before confirmation!!

Prompt D₈⁺: [ALICE, arxiv:2110.10006, (PLB 827 (2022) 136986)] Prompt non-strange D: [ALICE, arxiv:2110.09420, JHEP 01 (2022) 174]

Shreyasi Acharya, ICPAQGP 2023

7-10 Feb, 2023

Anisotropic flow (v_2, v_3) in Pb–Pb

[ALICE, arxiv:2005.11131, PLB 813 (2021) 136054]

- Positive v_2 and v_3 of D: in 0-10% and 30-50% collisions
 - \rightarrow charm participates in collective motion

 \bullet Current uncertainties too large to draw conclusion about potential difference between $D_{\rm s}^+$ and non-strange D!!

Model comparisons to understand which physics effects are relevant.

Prompt D mesons

TAMU: PRL 124, 042301 (2020) LIDO: PRC 98, 064901 (2018) PHSD: PRC 93, 034906 (2016) Catania: PRC 96, 044905 (2017) LBT: PLB 777 (2018) 255-259 LGR: EPJC 80 (2020) 7, 671 POWLANG: EPJC 75 (2015) 3, 121 MC@sHQ: PRC 91, 014904 (2015) DAB-MOD:PRC 96, 064903 (2017)

Model comparisons to understand which physics effects are relevant.

[ALICE, arxiv:2110.09420, JHEP 01 (2022) 174]

Model comparisons to understand which physics effects are relevant.

Prompt D mesons

TAMU: PRL 124, 042301 (2020) LIDO: PRC 98, 064901 (2018) PHSD: PRC 93, 034906 (2016) Catania: PRC 96, 044905 (2017) LBT: PLB 777 (2018) 255-259 LGR: EPJC 80 (2020) 7, 671 POWLANG: EPJC 75 (2015) 3, 121 MC@sHQ: PRC 91, 014904 (2015) DAB-MOD:PRC 96, 064903 (2017)

• Challenging to describe R_{AA} and v_2 simultaneously over the whole p_T range

Prompt D mesons

[ALICE, arxiv:2110.09420, JHEP 01 (2022) 174]

• Radiative energy loss important to describe intermediate and high p_{T}

[ALICE, arxiv:2110.09420, JHEP 01 (2022) 174]

• Hadronisation via recombination important to describe low and intermediate $p_{\rm T}$

Non-prompt D meson R_{AA} and v_2

Non-prompt D^0 , Prompt D^0

- R_{AA} of **non-prompt D**⁰ systematically **higher** than the **prompt D**⁰ ($p_T \gtrsim 5 \text{ GeV}/c$)
- ightarrow beauty quarks loose less energy than charm quarks because of their larger mass.

• Hint of positive v_2 of non-prompt D^0

 \rightarrow beauty quark thermalised? Or due to recombination with light quarks?

Charm hadronisation in Pb–Pb and pp collisions

I GB

TAMU Catania

PHSD

Double ratio of prompt D_{c}^{+}/D^{0} :

[ALICE, arxiv:2110.10006, PLB 827 (2022) 136986]

- Agreement with models that include:
- \rightarrow strangeness enhancement and
- \rightarrow fragmentation + recombination

[ALICE, arxiv:2112.08156, (Submitted to PLB)]

- Increasing trend from pp, to semi-central and **most central Pb-Pb** (at intermediate $p_{\rm T}$)
- \rightarrow Coalescence? Radial flow?

Charm hadronisation in Pb–Pb and pp collisions

No evidence of multiplicity dependence, from low (pp) to high (central Pb-Pb) multiplicity

- \rightarrow Reproduced by fragmentation + recombination and SHM predictions
- Is the $p_{\rm T}$ -differential enhancement at intermediate $p_{\rm T}$ a consequence of radial flow only?

- \bullet Charm production accessed via prompt D mesons and prompt $\Lambda_{\rm c}^+$
 - \rightarrow Charm quarks interact with medium via collisional and radiative processes
 - \rightarrow Charm quarks **participate** in the collective motion, i.e. **are thermalised**
 - → Charm quarks hadronise via recombination + fragmentation
- Beauty production accessed via non-prompt D mesons
 - \rightarrow Important constraint of mass dependence of ΔE

More studies needed to discriminate among different theoretical descriptions and physics mechanisms.

Back-up

Summary of charm quark transport model

	Energy Loss:		Initial state effect:	Hadronization:
	Collisional	Radiative	[nPDF]	[Frag.+Recom.]
TAMU	v	×	 ✓ 	V
PHSD	~	×	~	V
Catania	~	×	~	V
POWLANG-HLT	~	×	~	V
LIDO	~	v	~	V
LGR	v	~	~	v
LBT	v	~	~	v
MC@sHQ+EPOS2	~	v	~	V
DAB-MOD	~	v	×	 ✓

Difference in models due to differences in implementations of:

- Interactions of c-quark with medium: [Table]
- Considered nPDFs

- Ideal or viscous hydro
- Various recombination approaches e.g., Wigner, Resonance-recombination