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Plan:

In the ”lattice” Partition function of SU(N)−Higgs in
the path-integral formulation, the partition averages are
ZN invariant, even though the action is not invariant
under ZN .

Discuss possible implications for QCD



ZN in Pure SU(N) gauge theory: At temperature T

Aµ = λaA
a
µ, a = 1, 2, ....,N2 − 1

Fµν = ∂µAν − ∂νAµ − ig [Aµ,Aν ]

Sg =

∫ β

0

dτ

∫
d3x

{
1

2
Tr [FµνFµν ]

}
Z(T ) =

∫
[DA]Exp[−Sg ]

Functional integral is over Aµ satisfying A(x , 0) = A(x , β).
Allowed gauge transformations, V (x , τ) ∈ SU(N), satisfy

V (x , 0) = zV (x , β), z = Ie i2πn/N ∈ ZN ⊂ SU(N),

hence called ZN gauge transformations.



ZN symmetry and Polyakov loop: Thermodynamics

L(x ,T ) =
1

N
Tr {U(x , 0; x , β)} ,

U(x , 0; x , β) = P

[
Exp

(
ig

∫ β

0

dτA0(x , τ)

)]
〈|L|〉 ∝ exp(−F/T )

where F is free energy of a static charge.

Svetitsky and Mclerran, Phys. Rev. D 24 (1981)

〈L〉 = 0 =⇒ confinement, 〈L〉 6= 0 =⇒ deconfinement. So 〈|L|〉
is an order parameter for the confinement deconfinement phase
transition.

V (x , 0) = zV (x , β) =⇒ L(x ,T ) −→ zL(x ,T )



ZN symmetry and Polyakov loop: Thermodynamics

Polyakov loop effective model:- It is possible to describe the CD
transition using,

V (L,T ) = T 4(−aL2 + cL4),N = 2

= T 4(−a|L|2 + b(L3 + L∗3) + c |L|4),N = 3

A. Dumitru, R. D. Pisarski, PLB(2001)

〈L〉 is obtained by minimising V (L,T ). The free energy of the
system,

F = −V (〈L〉,T )

By suitable choices a, b, and c , it is possible to reproduce lattice
results.



ZN symmetry in the presence of bosonic(Φ) and fermion(Ψ)
matter fields.

Z(T ) =

∫
D[AΦΨ] Exp[− (Sg + SB + SF )]

SB =

∫
d3x

∫
dτ

{
1

2
|DµΦ|2 +

m2

2
Φ†Φ

}
SF =

∫
d3x

∫
dτ
(
/D −m

)
Ψ

Path-integral is over Φ and Ψ with boundary conditions,

Φ(x , 0) = Φ(x , β),Ψ(x , 0) = −Ψ(x , β)

But a ZN gauge transformation leads to
Φg (x , 0) = zΦg (x , β),Ψg (x , 0) = −zΨg (x , β).



Explicit breaking of ZN

A ZN transformation can always be written as,

V (x , τ) = g(τ)U(x , τ)

U(x , τ) is periodic in τ−direction, g(0) = zg(β). g(τ) can be
taken to be,

g(τ) = Iexp {iα(τ)} with

α(τ) = 0, τ < β

=
2πn

N
, τ = β

n = 0, 1, .....,N − 1.



Supposing g(τ) is allowed to act only on the gauge fields, i.e
A0 → Ag

0 .The only affected terms in S are,

|Dg
0 Φ| 6= |D0Φ|

Ψ̄(γ0Dg
0 Ψ) 6= Ψ̄(γ0D0Ψ)

The effects of matter fields lead to,

V (L,T ) = V0(L,T )− h2L, for N = 2

= V0(L,T )− h3Lr , for N = 3

h2 and h3 are the strength of the explicit breaking. h2 6= 0 leads
to crossover, h3 6= 0 leads to weak 1st order, second order or even
a crossover for large h3.

What are h2(T ,m, λ, nf , µB) and h3(T ,m, λ, nf , µB) near CD
transition?



SU(N)+Higgs action on the lattice(λφ = 0,mφ)

Sg ,Φ = Sg − κ
∑
x̂ ,n

ReTr
[

(Φ†n+x̂Un,x̂Φn)
]

+
∑
n

1

2
Tr
(
Φ†nΦn

)
− κ

∑
,n

ReTr
[

(Φ†n+τ̂Un,τ̂Φn)
]
, (NS)3 × Nτ

κ = 1
(ma)2+8

. Observables computed are averages and distributions

of the Polyakov loop.

Sg , L =
1

N

∑
x

Tr

[
Nτ∏

nτ=1

Ux,τ̂

]
SKs =

∑
x̂ ,n ReTr

[
(Φ†n+x̂Un,x̂Φn)

]
,

SKτ =
∑

x̂ ,n ReTr
[

(Φ†n+τ̂Un,τ̂Φn)
]



SU(2)-Higgs
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For Nτ = 2 there is no volume dependence in the Polyakov loop
average signalling a crossover. In contrast, there is clear volume
dependence for Nτ = 8
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The Polyakov loop average scales with volume near the critical
point suggesting a second-order phase transition.

These results imply h2 = 0. In SU(2)−Higgs theory at λφ = 0
and mφ = 0, critical behaviour is only possible if h2 = 0.



SU(3)-Higgs at λφ = 0 and mφ = 0 Nτ = 2
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For Nτ = 2 the transition is 2nd order but behaves as an endpoint
of first order transition. The universality class is that of 3D Ising
model.



Nτ = 4
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Difference of gauge action Sg and gauge Higgs interaction
SK = SKτ + SK4 between Arg(L) = 0 and Arg(L) = exp(2π/3)
states, as a function of Nτ
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The results suggest that h3 → 0 in the continuum limit.
Why there is symmetry, even though the action is not invariant
under L→ zL?



Z =

∫
dLg(L)e−F (L)

Even if the Boltzman factor does not have the L→ zL symmetry
if it is dominated by the density of states, g(L), which is
symmetric under L→ zL, then thermodynamic averages will have
ZN symmetry.

Sg ,Φ = Sg − κ
∑
x̂ ,n

ReTr
[

(Φ†n+x̂Un,x̂Φn)
]

+
∑
n

1

2
Tr
(
Φ†nΦn

)
− κ

∑
,n

ReTr
[

(Φ†n+τ̂Un,τ̂Φn)
]

Sg ,Φ = Sg − κ
∑
n

ReTr
[

(Φ†n+τ̂Un,τ̂Φn)
]

+
∑
n

1

2
Tr
(
Φ†nΦn

)



Sg ,Φ = Sg − κ
∑
n

ReTr
[

(Φ†n+τ̂Un,τ̂Φn)
]

+
∑
n

1

2
Tr
(
Φ†nΦn

)
The Φ field can be easily integrated out as the second term is like
a collection of non-interacting gauged Higgs chains. The
integration gives rise to a determinant,

Z =

∫
DAExp[−Sg ]QV

Q(κ, L,Nτ ) = Det (M) ,

M =

(
ANτ BNτ + κWx

BNτ + κW †
x CNτ

)
,Wx = U(x , 0; x , β)

BNτ → 0 with Nτ →∞, so that Q(L) = Q(zL). So in the
continuum limit, ZN symmetry is realised in SU(N)−Higgs



Similar calculations, ignoring spatial gauge-fermion interaction
terms, in SU(N)−KS Fermions show that the strength of explicit
breaking decreases with Nτ , but does not vanish in the Nτ →∞
limit.

These results suggest that the explicit breaking of Z3 in QCD will
be small, which will lead to ZN meta-stable states.

-0.6

-0.3

 0

 0.3

 0.6

-0.4 -0.2  0  0.2  0.4  0.6

κ=0,16
3
 x 4

βg=1.92
Im

 L

Re L



Conclusions: Z3 meta-stable states are possible in heavy-ion
collisions.

Collaborators: Minati Biswal, Mridupawan Deka, Vinod Mamale,
Sabiar Shaikh, P. S. Saumia


