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o 2+ 1 flavor QCD , since m, ¢ < Aqcp the Up(2) x Ug(2) is
minimally broken.
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Introduction

o 2+ 1 flavor QCD , since m, 4 < Agcp the U(2) x Ugr(2) is
minimally broken.

o The breaking of non-singlet part of this chiral symmetry i.e.
SUA(2) x SUy(2) — SUy(2) of QCD happens below
T, =156.5+1.5 MeV
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Introduction

o 2+ 1 flavor QCD , since m, 4 < Agcp the U(2) x Ugr(2) is
minimally broken.

o The breaking of non-singlet part of this chiral symmetry i.e.
SUA(2) x SUy(2) — SUy(2) of QCD happens below
T, =156.5+15 MeV

o However Ux(1) part of the chiral symmetry is anomalous
hence it is not clear whether it is effectively restored along
with its non-singlet part.
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Introduction

o 2+ 1 flavor QCD , since m, 4 < Agcp the U(2) x Ugr(2) is
minimally broken.

o The breaking of non-singlet part of this chiral symmetry i.e.
SUA(2) x SUy(2) — SUy(2) of QCD happens below
T, =156.5+1.5 MeV

o However Ux(1) part of the chiral symmetry is anomalous
hence it is not clear whether it is effectively restored along
with its non-singlet part.

o There are some evidence that show Ux(1) remains effectively
broken at T, in 2 + 1 flavor QCD with physical quark mass m
even when m — 0
but also there are some
contrary results
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Motivation

o The eigenvalue spectrum of Dirac operator contains valuable
information about the fundamental properties of Quantum
Chromodynamics (QCD).
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of the eigenvalues?
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Motivation

o The eigenvalue spectrum of Dirac operator contains valuable
information about the fundamental properties of Quantum
Chromodynamics (QCD).

o Does non singlet part of chiral symmetry and it's singlet part is
effectively restored at the same 7. Can we explain it in terms
of the eigenvalues?

o The eigenvalue spectrum on the lattice depends on the choice
of the fermion discretisation. What will happen with staggered
fermions?

o It will be interesting to check the properties of the eigenvalue
spectrum by carefully performing a continuum extrapolation,
in the large volume limit.
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Technical details

o In this work we use the gauge configurations for 2 + 1 flavor
QCD with physical quark masses, generated by the HotQCD
collaboration using Highly Improved Staggered quark (HISQ)
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o In this work we use the gauge configurations for 2 + 1 flavor
QCD with physical quark masses, generated by the HotQCD
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o The Goldstone pion mass is set to 140 MeV and the kaon mass
is 435 MeV for these configurations.
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o The Goldstone pion mass is set to 140 MeV and the kaon mass
is 435 MeV for these configurations.

o We focus on five different temperatures, one below T, and
others above T..

o Ateach T = N%a we consider N, = 8,12, 16 to take the
continuum limit.
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collaboration using Highly Improved Staggered quark (HISQ)

o The Goldstone pion mass is set to 140 MeV and the kaon mass
is 435 MeV for these configurations.

o We focus on five different temperatures, one below T, and
others above T..

o Ateach T = N%a we consider N, = 8,12, 16 to take the
continuum limit.

o The spatial lattice sites was chosen to be Ns = 4N, such that
the spatial volume in each case was about 4 fm.
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Technical details

o In this work we use the gauge configurations for 2 + 1 flavor
QCD with physical quark masses, generated by the HotQCD
collaboration using Highly Improved Staggered quark (HISQ)

o The Goldstone pion mass is set to 140 MeV and the kaon mass
is 435 MeV for these configurations.

o We focus on five different temperatures, one below T, and

others above T..

o Ateach T = N%a we consider N, = 8,12, 16 to take the
continuum limit.

o The spatial lattice sites was chosen to be Ns = 4N, such that
the spatial volume in each case was about 4 fm.

o We next measure 60 — 200 eigenvalues of the massless HISQ
Dirac matrix per configuration.
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Our results: Eigenvalue density as a function of T
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o The bulk eigenvalue density is characterized as

[ S. Aoki, H. Fukaya, and Y. Taniguchi, 12]

PN o A a(Tm) N oT,m)
T3 T3 T

m A3
7t g tpellm
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Characterizing Bulk modes

o The bulk eigenvalue density is characterized as

p(N) &+i (T, m) N /\72 (T, m) A3
T3 T3 T T2 TR S E

(T, m) .

o The coefficients ¢; 5 3 can in general be a function of the
temperature T and the light-quark mass m.
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T3 T3 T T2 TR S E

(T, m) .

o The coefficients ¢; 5 3 can in general be a function of the
temperature T and the light-quark mass m.

o Earlier study assuming the restoration of singlet and
non-singlet part at same temperature gives
Clp = O(mz) and ¢c3 = + C’)(m2)
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Characterizing Bulk modes

o The bulk eigenvalue density is characterized as

p(N) &+i (T, m) N /\72 (T, m) A3
T3 T3 T T2 TR S E

(T, m) .

o The coefficients ¢; 5 3 can in general be a function of the
temperature T and the light-quark mass m.

o Earlier study assuming the restoration of singlet and
non-singlet part at same temperature gives
Clp = O(mz) and ¢c3 = + C’)(m2)

o Taking continuum (~ 1/N?) extrapolation of ¢; at different T,
the T and m dependence is given by ¢;(m, T)/T? = 16.8(4).
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Characterizing Bulk modes

o The bulk eigenvalue density is characterized as

p(N) &+i (T, m) N /\72 (T, m) A3
T3 T3 T T2 TR S E

(T, m) .

o The coefficients ¢; 5 3 can in general be a function of the
temperature T and the light-quark mass m.

o Earlier study assuming the restoration of singlet and
non-singlet part at same temperature gives
Clp = O(mz) and ¢c3 = + C’)(m2)

o Taking continuum (~ 1/N?) extrapolation of ¢; at different T,
the T and m dependence is given by ¢;(m, T)/T? = 16.8(4).

o We perform a fit to the bulk part i.e. all eigenvalues \ > )\

with ﬂ7(_/§) _ 3\_.c1(T m 4 /10
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near zero modes distribution

o Near zero modes distribution at zero temperature from

Instanton Liquid model (. 5. M. verbaarschot, 1097]

p(cA) =

p(ch)

Ravi Shanker
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When is Ux(1) effectively restored?

o The observable we Iook.is , where y an'd X(;'is defined
as x» = [ d*x (r'(x)7'(0)) and x5 = i d*x (6'(x)d'(0))

o Ux(1) restoration happens around temperature ~ 1.14 T,

200 ‘ ‘ ‘
162 MeV —e—
180 166 MeV 1
171 MeV —=m—
160 ° 176 MgV —eo— |

& 140 . 1
= 120

<
100
&

= g0

60 | ]
40

2 ——
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
1IN,

Ravi Shanker ICPAQGP 23 Slide 8 of 15



Distribution of smallest eigenvalue at different T

o For a random matrix ensemble at 7 = 0 the smallest
eigenvalue is distributed according to,

P(cA ):\/Z(C)\ )*2 15 (cA Je~ 2 (Amin)?
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Why is Ua(1) effectively restored only at 7 > T.7

o It is evident that the smallest eigenvalue follow different
distributions as we increase temperature 0.97, — 1.1 7.
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Why is Ua(1) effectively restored only at 7 > T.7

o It is evident that the smallest eigenvalue follow different
distributions as we increase temperature 0.97, — 1.1 7.

o We remind that below T, the bulk and near-zero modes
strongly overlap with each other where as for T > T, the near
zero modes starts to appear.
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Why is Ua(1) effectively restored only at 7 > T.7
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distributions as we increase temperature 0.97, — 1.1 7.

o We remind that below T, the bulk and near-zero modes
strongly overlap with each other where as for T > T, the near
zero modes starts to appear.

o We find that at 7 ~ 1.157, the bulk and near-zero modes
completely separates.
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Why is Ua(1) effectively restored only at 7 > T.7

o It is evident that the smallest eigenvalue follow different
distributions as we increase temperature 0.97, — 1.1 7.

o We remind that below T, the bulk and near-zero modes
strongly overlap with each other where as for T > T, the near
zero modes starts to appear.

o We find that at 7 ~ 1.157, the bulk and near-zero modes
completely separates.

° Ua(1)
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Summary and Outlook

o We can visualize the quarks moving in the background of an
interacting ensemble of instantons.
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o T<T,: — small eigenvalues
follow random matrix predictions.
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Summary and Outlook
o We can visualize the quarks moving in the background of an
interacting ensemble of instantons.

oscillatory behavior.

o T < T¢ :strongly interacting instantons — small eigenvalues
follow random matrix predictions.
o T = T, :Interactions are liquid-like — small eigenvalues have
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Summary and Outlook

o We can visualize the quarks moving in the background of an
interacting ensemble of instantons.

o T < T¢ :strongly interacting instantons — small eigenvalues
follow random matrix predictions.

o T 2 T¢ :Interactions are liquid-like — small eigenvalues have
oscillatory behavior.

o T ~ 1.15T, :Interactions further reduce — Near-zero and bulk
modes completely separates.
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Summary and Outlook

o We can visualize the quarks moving in the background of an
interacting ensemble of instantons.

o T<T,: — small eigenvalues
follow random matrix predictions.

o T 2 T.: — small eigenvalues have
oscillatory behavior.

o T ~1.15T,: — Near-zero and bulk

modes completely separates.

o This is the probably the reason why Ux(1) is effectively
restored around the same temperature — it is essential to take
the continuum limit.
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o Temperature dependence of ¢; in continuum.
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o Spacing distribution of bulk modes.
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o Spacing distribution of bulk modes.

o Dotted — f(s) = asbe=e" solid — f(s) = ps2e—as’
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o spacing distribution using a mixed ansatz —
P(s) ~ s?exp{(—as)}.
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