

Charm production and fragmentation fractions at midrapidity in pp collisions at the LHC with ALICE

Renu Bala, for the ALICE Collaboration University of Jammu

7-10 February 2023, Puri, Odisha, India

Heavy flavour in pp collisions: motivation

ALICE

Heavy quarks (charm and beauty) have large mass ($m_c \sim 1.3 \text{ GeV}/c^2$, $m_b \sim 4.2 \text{ GeV}/c^2$). $m_q >> \Lambda_{QCD} \Rightarrow$ production cross sections can be calculated using perturbative QCD

Cross section of hadron production can be factorised to parton distribution functions (PDFs), partonic cross sections and fragmentation functions (FF):

Fragmentation functions assumed universal among collision systems and constrained from measurements in e⁺e⁻ and e⁻p collisions

Ratios of particle species are sensitive to heavy-quark hadronization

Reconstructed decays (open charm mesons and baryons) D mesons : $D^{0}(uc) \rightarrow K^{-}\pi^{+}$, $D^{+}(dc) \rightarrow K^{-}\pi^{+}\pi^{+}$ $D^{*+} \rightarrow D^{0}\pi^{+}$, $D^{+}_{s}(cs) \rightarrow \Phi\pi^{+} \rightarrow K^{-}\pi^{+}\pi^{+}$

$$\Lambda_c^+(\mathrm{udc}) \to \mathrm{pK}^-\pi^+, \ \mathrm{pK}_\mathrm{s}^0 \to \mathrm{p}\pi^+\pi^-$$

$$\Sigma_{\rm c}^{0,++}({\rm ddc},\,{\rm uuc}) \to \Lambda_{\rm c}^+\pi^{-,+}$$

$$\Xi_c^0(dsc)\to\Xi^-e^+\nu_e,\Xi^-\pi^+$$

$$\Xi_c^+(usc)\to \Xi^-\pi^+\pi^+$$

$$\Omega_{\rm c}^0({\rm ssc}) \to \Omega^- \pi^+$$

Data samples used for the analysis shown:

pp: $\sqrt{s} = 5.02 \text{ TeV} \rightarrow L_{\text{int}} \approx 19 \text{ nb}^{-1}$ $\sqrt{s} = 13 \text{ TeV} \rightarrow L_{\text{int}} \approx 32 \text{ nb}^{-1}$ ALICE

Charm-meson production in pp collisions

Renu Bala, University of Jammu

ICPAQGP-2023

Puri, Odisha

Charm meson ratio in pp collisions

- Meson-to-meson ratios **independent of** p_{T} and collision system
- FONLL calculations (pQCD) correctly describe the data

Using fragmentation functions evaluated from e⁺e⁻, e⁻p measurements

Higher $D_s^+/(D^0+D^+)$ ratios for non-prompt mesons, due to relevant contribution to D_s^+ from B⁰, B⁺ decays

FONLL: M. Cacciari et al, JHEP 10 (2012) 137 PYTHIA 8 : P. Skands, et al., EPJC 74 (2014) 3024

Charm baryons in pp collisions

Charmed baryon-to-meson ratio shows a strong $p_{\rm T}$ dependence

➢ Ratio significantly higher than in e⁺e⁻ and e⁻p collisions : factor of 5x enhancement at low p_T

Centre of mass energy independence within uncertainties $(\sqrt{s} = 5.02 \text{ TeV} \text{ and } \sqrt{s} = 13 \text{ TeV})$

 $0.113 \pm 0.013 \pm 0.006$ LEP average, <u>EPJC 75, 19 (2015)</u>

ALI-PREL-502456

Charm baryons in pp collisions: comparison with models

PYTHIA 8

Models based on fragmentation functions from e⁺e⁻

collisions underestimate the data

(PYTHIA 8 Monash)

Models including color reconnection beyond leading color describe the data

(PYTHIA 8 CR Mode 2)

Catania

- Assumes a thermalized system of gluons, u,d,s quarks and antiquarks
- Hadronization via coalescence and fragmentation
 - at $p_T \approx 0$ charm quarks hadronize only via coalescence
 - at high p_T fragmentation is dominant

ALICE

Charm baryons in pp collisions: comparison with models

Statistical Hadronization Model + Relativistic Quark Model (SHM+RQM)

Replaces the complexity of hadronization by thermostatistical weights governed by the masses of available hadron states at a universal hadronization "temperature"

> Feed-down from an augmented set of excited charm baryons (predicted by RQM) necessary to describe Λ_c^+ /D⁰

PDG: 5 Λ_c , 3 Σ_c , 8 Ξ_c , 2 Ω_c

RQM: additional 18 Λ_c , 42 Σ_c , 62 Ξ_c , 34 Ω_c

PYTHIA 8 Monash: P. Skands, et al., EPJC 74 (2014) 3024 PYTHIA 8 CRTunes: J. Christiansen, et al., JHEP 08 (2015) 003 Herwig: Eur.Phys.J. C76 (2016) no.4, 196 SHM: M. He and R. Rapp, PLB 795 (2019) 117-121 RQM: D. Ebert, et al., PRD 84:014025, 2011 Catania: V. Minissale, et al., PLB 821 (2021) 136622

ALTCE

SHM+RQM, Catania and QCM

$\label{eq:Strange Charmed baryons in pp collisions \Xi_c^{\ 0+} \qquad \Xi_c^0(\mathrm{dsc}) \to \Xi^-\mathrm{e}^+\nu_\mathrm{e}, \Xi^-\pi^+$

- Significantly underestimated by models
 - > Factor ~30 at low $p_{\rm T}$ wrt PYTHIA Monash
 - Catania model (fragm.+ coal.) closer to measurements than other models
- $\blacktriangleright\,$ Ratio $\Xi_c^{0,+}/\Sigma_c^{0,+,++}\,$ in agreement with PYTHIA Monash

▶ Similar suppression in
$$e^+e^-$$
 for $\Xi_c^{0,+}$ and $\Sigma_c^{0,+,++}$

ALICE

Doubly strange charmed baryon in pp collisions Ω_c^0 $\Omega_c^0(ssc) \rightarrow \Omega^- \pi^+$

- > Model predictions rescaled by branching ratio obtained from theoretical models (Hsiao et.al EPJC80, 1066 (2020))
- > PYTHIA 8 +CR-BLC effects underestimate the data
- Better agreement with Catania and Quark-recombination model (QCM)
- $\succ \Omega_c^0/\Xi_c^0 \approx 1 \implies$ important contribution to charm production at LHC energies by Ω_c^0 ?

Multiplicity dependence of charm-hadron production

- No multiplicity dependence for D⁺_s /D⁰ ratios
- Λ_c⁺/D⁰ ratios at intermediate p_T larger for highest multiplicity than for lowest multiplicity
 - > **5.3** σ significance for $1 < p_T < 12$ GeV/*c*
- *p*_T and multiplicity dependence qualitatively described by:
 - PYTHIA with colour reconnection beyond leading-colour approximation (CR-BLC)
 - CE-SH, a statistical hadronization model with particle set from RQM

PYTHIA 8 Monash: P. Skands, et al., EPJC 74 (2014) 3024 PYTHIA 8 CR Tunes: J. Christiansen, et al., JHEP 08 (2015) 003 CE-SH: Phys. Lett. B 815 (2021) 136144

Charm fragmentation fractions in small systems

ALI-PREL-503055

- → Charm fragmentation fractions in hadronic collisions at $\sqrt{s_{\rm NN}} = 5.02 \text{ TeV}$
 - pp: published in PRD 105 (2022), L011103
 p-Pb:
 - D^0 and $\Lambda_c\,$: measured down to $p_T = 0$
 - D^+ and D_s^+ extrapolated to $p_T = 0$ with POWHEG+PYTHIA
 - $\Xi_{\rm c}^0$: not measured $\rightarrow \sigma_{\rm pp}(\Xi_{\rm c}^0) \times 208 \times R_{\rm pPb}(\Lambda_{\rm c}^+)$
 - Charm fragmentation fractions are compatible in pp and p-Pb collisions, but differ significantly from those in e⁺e⁻ and e⁻p
 - charm fragmentation fractions are not universal!

Total charm production cross-section

Total charm production cross section measured at midrapidity in pp and p-Pb collisions at $\sqrt{s} = 5$ TeV by summing all charm ground states

 $(d\sigma^{c\bar{c}}/dy)_{|y|<0.5} = 1165 \pm 44(\text{stat.})^{+134}_{-101} \text{(syst)} \ \mu \text{b}$

- Cross sections in pp and p-Pb collisions are compatible within uncertainties
- Results are on the upper edge of pQCD (FONLL and NNLO) calculations

STAR: PRD 86 (2012) 072013 PHENIX: PRC 84 (2011) 044905 FONLL: JHEP 10 (2012) 137 NNLO: PRL 118 (2017) 122001

Summary and Outlook

- Precise measurements of charm-meson production described by pQCD predictions with large theoretical uncertainties
- PQCD calculations based on factorization approach and assuming universal fragmentation fractions among different collision systems do not describe charm-baryon production in hadronic collisions
 - Baryon-to-meson ratios and fragmentation fractions significantly differ among different collision systems
 charm fragmentation not universal across different collision systems
- > Additional hadronization mechanism could take place in pp compared to e⁺e⁻ and e⁻p
 - > Models including enhanced production of baryons or coalescence better describe the measurements
 - > More studies are needed to discriminate among different theoretical descriptions
- > New measurement will be performed opening new physics horizons, thanks to
 - > Larger data samples and improved tracking resolution in Run 3 & Run 4 with the upgraded ALICE detector

Thank you for your kind attention!!!