

Lattice approach to inhomogeneous magnetic fields as probes of QCD thermodynamics

ICPAQGP 2023 - Puri, India

Dean Valois dvalois@physik.uni-bielefeld.de

Gergely Endrődi Bastian Brandt Gergely Marko Francesca Cuteri October 29, 2022

Department of Physics Bielefeld University

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References

- 1. Motivation
- 2. Lattice QCD and magnetic fields
- 3. Lattice simulations
- 4. Summary & Conclusions

Motivation

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
000				

PERIPHERAL HICS

 $\sqrt{eB}\sim 0.1~\text{-}~0.5~\text{GeV}$

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
000	0000	000000000	00	

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
000	0000	000000000	00	

Figure 1: Spatial distributions **B** (left) and **E** (right) fields for an impact parameter b = 10 fm. *P* Deng and Huang 2012.

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
000	0000	000000000	00	

Figure 1: Spatial distributions **B** (left) and **E** (right) fields for an impact parameter b = 10 fm. *P* Deng and Huang 2012.

Caveats:

- highly non-homogeneous background.
- E leads to sign problem.
- No Minkoswki time evolution in lattice QCD.

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
000	0000	000000000	00	

Figure 1: Spatial distributions **B** (left) and **E** (right) fields for an impact parameter b = 10 fm. *P* Deng and Huang 2012.

Caveats:

- highly non-homogeneous background.
- E/leads/to/sign/problem/
- No Minkoswiki time evolution in lettice QCD/

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
000	0000	000000000	00	

Figure 1: Spatial distributions **B** (left) and **E** (right) fields for an impact parameter b = 10 fm. *P* Deng and Huang 2012.

Caveats:

- highly non-homogeneous background.
- E/leads/to/sigh/problem/
- No Minkoswki time evolution in lettice QCD/.

B changes T_c : could the system be in different phases at different x?

Lattice **QCD** and magnetic fields

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
000	0000	000000000	00	

Lattice dob and magnetic fields Lattice simulations obtiminary a conclusions	References
000 0000 00000000 00	

$$\langle \ \mathcal{O} \
angle = rac{1}{\mathcal{Z}} \int \mathcal{D} \bar{\psi} \mathcal{D} \psi \mathcal{D} A \ \mathcal{O} e^{-S[\bar{\psi},\psi,A]}$$

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
	0000			

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}\bar{\psi}\mathcal{D}\psi\mathcal{D}A \ \mathcal{O}e^{-S[\bar{\psi},\psi,A]} \longrightarrow \frac{1}{\mathcal{Z}} \int \mathcal{D}A \det\left[\mathcal{D}(A) + m\right] \mathcal{O}e^{-S_g[A]}$$

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
000	0000	000000000	00	

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}\bar{\psi}\mathcal{D}\psi\mathcal{D}A \ \mathcal{O}e^{-S[\bar{\psi},\psi,A]} \longrightarrow \frac{1}{\mathcal{Z}} \int \mathcal{D}A \det\left[\mathcal{D}(A) + m\right] \mathcal{O}e^{-S_g[A]}$$

• quarks
$$\psi(x) \ x \in \mathbb{R} \longrightarrow \psi(n) \ n \in \mathbb{Z}$$

000 0000 00000000 00	Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
	000	0000	000000000	00	

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}\bar{\psi}\mathcal{D}\psi\mathcal{D}A \ \mathcal{O}e^{-S[\bar{\psi},\psi,A]} \longrightarrow \frac{1}{\mathcal{Z}} \int \mathcal{D}A \det\left[\mathcal{D}(A) + m\right] \mathcal{O}e^{-S_g[A]}$$

• quarks
$$\psi(x) \ x \in \mathbb{R} \longrightarrow \psi(n) \ n \in \mathbb{Z}$$

• gluons
$$A_{\mu} \longrightarrow U_{\mu} = e^{iagA_{\mu}^{o}T_{b}} \in SU(3)$$

000 0000 00000000 00	Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
	000	0000	000000000	00	

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}\bar{\psi}\mathcal{D}\psi\mathcal{D}A \ \mathcal{O}e^{-S[\bar{\psi},\psi,A]} \longrightarrow \frac{1}{\mathcal{Z}} \int \mathcal{D}A \det\left[\mathcal{D}(A) + m\right] \mathcal{O}e^{-S_g[A]}$$

- quarks $\psi(x) \ x \in \mathbb{R} \longrightarrow \psi(n) \ n \in \mathbb{Z}$
- gluons $A_{\mu} \longrightarrow U_{\mu} = e^{iag A_{\mu}^{b} T_{b}} \in SU(3)$
- (anti-)periodic BC

000 0000 00000000 00	Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
	000	0000	000000000	00	

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}\bar{\psi} \mathcal{D}\psi \mathcal{D}A \ \mathcal{O}e^{-S[\bar{\psi},\psi,A]} \longrightarrow \frac{1}{\mathcal{Z}} \int \mathcal{D}A \det\left[\mathcal{D}(A) + m\right] \mathcal{O}e^{-S_g[A]}$$

• gluons
$$A_{\mu} \longrightarrow U_{\mu} = e^{iag A_{\mu}^{b} T_{b}} \in SU(3)$$

• (anti-)periodic BC

1. Generate samples $\{\mathcal{O}_1, \mathcal{O}_2, ..., \mathcal{O}_N\}$ with a probability $\det [\mathcal{D}(A) + m] e^{-S_g}$ using Monte Carlo steps.

000 0000 00000000 00	Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
	000	0000	000000000	00	

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}\bar{\psi} \mathcal{D}\psi \mathcal{D}A \ \mathcal{O}e^{-S[\bar{\psi},\psi,A]} \longrightarrow \frac{1}{\mathcal{Z}} \int \mathcal{D}A \det\left[\mathcal{D}(A) + m\right] \mathcal{O}e^{-S_g[A]}$$

- quarks $\psi(x) \ x \in \mathbb{R} \longrightarrow \psi(n) \ n \in \mathbb{Z}$
- gluons $A_{\mu} \longrightarrow U_{\mu} = e^{iag A^{b}_{\mu}T_{b}} \in SU(3)$
- (anti-)periodic BC

- 1. Generate samples $\{\mathcal{O}_1, \mathcal{O}_2, ..., \mathcal{O}_N\}$ with a probability $\det[\mathcal{D}(A) + m]e^{-S_g}$ using Monte Carlo steps.
- 2. Calculate averages $\langle \mathcal{O} \rangle = (1/N) \sum_{i=1}^{N} \mathcal{O}_i$

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
000	0000	000000000	00	

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}\bar{\psi} \mathcal{D}\psi \mathcal{D}A \ \mathcal{O}e^{-S[\bar{\psi},\psi,A]} \longrightarrow \frac{1}{\mathcal{Z}} \int \mathcal{D}A \det\left[\mathcal{D}(A) + m\right] \mathcal{O}e^{-S_g[A]}$$

• quarks
$$\psi(x) \ x \in \mathbb{R} \longrightarrow \psi(n) \ n \in \mathbb{Z}$$

• gluons
$$A_{\mu} \longrightarrow U_{\mu} = e^{iagA_{\mu}^{b}T_{b}} \in SU(3)$$

- 1. Generate samples $\{\mathcal{O}_1, \mathcal{O}_2, ..., \mathcal{O}_N\}$ with a probability det $[\mathcal{D}(A) + m]e^{-S_g}$ using Monte Carlo steps. 2. Calculate averages $\langle \mathcal{O} \rangle = (1/N) \sum_{i=1}^{N} \mathcal{O}_i$

• magnetic field
$$B \longrightarrow u_{\mu} = e^{iaqA_{\mu}} \in U(1)$$
 (BACKGROUND!)

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
000	0000	000000000	00	

UNIFORM MAGNETIC FIELD ON THE LATTICE

$$\mathbf{B} = \mathbf{
abla} imes \mathbf{A}$$

$$A_y = Bx$$

periodic boundary conditions

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
000	0000	000000000	00	

UNIFORM MAGNETIC FIELD ON THE LATTICE

$$\mathbf{B} = \mathbf{
abla} imes \mathbf{A}$$

$$A_y = Bx$$

periodic boundary conditions

$$u_x = \begin{cases} e^{-iqBL_xy} & \text{if } x = L_x - a\\ 1 & \text{if } x \neq L_x - a \end{cases}$$
$$u_y = e^{iaqBx}$$
$$u_z = 1$$
$$u_t = 1$$

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
000	0000	000000000	00	

UNIFORM MAGNETIC FIELD ON THE LATTICE

Flux quantization in a box

$$\mathbf{B} = \mathbf{
abla} imes \mathbf{A}$$

$$A_y = Bx$$

$$qB = \frac{2\pi N_b}{L_x L_y}$$

periodic boundary conditions

$$u_x = \begin{cases} e^{-iqBL_xy} & \text{if } x = L_x - a\\ 1 & \text{if } x \neq L_x - a \end{cases}$$
$$u_y = e^{iaqBx}$$
$$u_z = 1$$
$$u_t = 1$$

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
000	0000	000000000	00	

INHOMOGENEOUS MAGNETIC FIELD ON THE LATTICE

$$\mathbf{B} = \frac{B}{\cosh\left(\frac{x-L_x/2}{\epsilon}\right)^2} \hat{z}$$
Motivated by HIC scenarios \mathscr{O} Deng and
Huang 2012, \mathscr{O} Cao 2018.

$$qB = \frac{\pi N_b}{L_y \epsilon \tanh\left(\frac{L_x}{2\epsilon}\right)} \qquad N_b \in \mathbb{Z}$$

$$u_x = \begin{cases} e^{-2iqB\epsilon y \tanh\left(\frac{L_x}{2\epsilon}\right)} & \text{if } x = L_x - a\\ 1 & \text{if } x \neq L_x - a\\ 1 & \text{if } x \neq L_x - a \end{cases}$$

$$u_y = e^{iaqB\epsilon [\tanh\left(\frac{x-L_x/2}{\epsilon}\right) + \tanh\left(\frac{L_x}{2\epsilon}\right)]}$$

$$u_z = u_t = 1$$

Lattice simulations

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
000	0000	00000000	00	<u> </u>

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
		000000000		

• $N_f = 2 + 1$ improved staggered fermions with physical masses;

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
_				

- $N_f = 2 + 1$ improved staggered fermions with physical masses;
- Lattices: $16^3 \times 6 \quad 24^3 \times 8 \quad 28^3 \times 10 \quad 36^3 \times 12 \quad \longrightarrow$ continuum limit (lattice spacing $\rightarrow 0, V = \text{const.}$);

Motivation 000	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References

- $N_f = 2 + 1$ improved staggered fermions with physical masses;
- Lattices: $16^3 \times 6 \quad 24^3 \times 8 \quad 28^3 \times 10 \quad 36^3 \times 12 \quad \longrightarrow$ continuum limit (lattice spacing $\rightarrow 0, V = \text{const.}$);
- Magnetic field

$$\mathbf{B} = \frac{B}{\cosh\left(\frac{x - L_x/2}{\epsilon}\right)^2} \hat{z} \qquad eB = \frac{3\pi N_b}{L_y \epsilon \tanh\left(\frac{L_x}{2\epsilon}\right)} \qquad \epsilon \approx 0.6 \text{ fm}$$

strength $0~{\rm GeV} \leq \sqrt{eB} \leq 1.2~{\rm GeV} \longrightarrow$ magnetars, HIC and early universe.

Motivation 000	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References

- $N_f = 2 + 1$ improved staggered fermions with physical masses;
- Lattices: $16^3 \times 6 \quad 24^3 \times 8 \quad 28^3 \times 10 \quad 36^3 \times 12 \quad \longrightarrow$ continuum limit (lattice spacing $\rightarrow 0, V = \text{const.}$);
- Magnetic field

$$\mathbf{B} = \frac{B}{\cosh\left(\frac{x - L_x/2}{\epsilon}\right)^2} \hat{z} \qquad eB = \frac{3\pi N_b}{L_y \epsilon \tanh\left(\frac{L_x}{2\epsilon}\right)} \qquad \epsilon \approx 0.6 \text{ fm}$$

strength $0 \text{ GeV} \le \sqrt{eB} \le 1.2 \text{ GeV} \longrightarrow \text{magnetars}$, HIC and early universe.

• Temperature $\longrightarrow 68 \text{ MeV} \le T \le 300 \text{ MeV}$ (crossover at $T_c \sim 155 \text{ MeV}$).

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
		000000000		

- $N_f = 2 + 1$ improved staggered fermions with physical masses;
- Lattices: $16^3 \times 6 \quad 24^3 \times 8 \quad 28^3 \times 10 \quad 36^3 \times 12 \quad \longrightarrow$ continuum limit (lattice spacing $\rightarrow 0, V = \text{const.}$);
- Magnetic field

$$\mathbf{B} = \frac{B}{\cosh\left(\frac{x - L_x/2}{\epsilon}\right)^2} \hat{z} \qquad eB = \frac{3\pi N_b}{L_y \epsilon \tanh\left(\frac{L_x}{2\epsilon}\right)} \qquad \epsilon \approx 0.6 \text{ fm}$$

strength $0 \text{ GeV} \le \sqrt{eB} \le 1.2 \text{ GeV} \longrightarrow \text{magnetars}$, HIC and early universe.

- Temperature $\longrightarrow 68 \text{ MeV} \le T \le 300 \text{ MeV}$ (crossover at $T_c \sim 155 \text{ MeV}$).
- Quantities: $\Sigma(x)_{T,B} = P(x)_{T,B} = \mathbf{J}(x)_{T,B}$.

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
000	0000	000000000	00	

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
		000000000		

Enchancement of the condensate: magnetic catalysis.

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
000	0000	000000000	00	

Enchancement of the condensate: magnetic catalysis.

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
		000000000		

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
		000000000		

POLYAKOV LOOP

Motivation Lattice QCD an	d magnetic fields Lattice simular	ions Summary & Conclusions	References
0000 0000	00000000	00 00	

POLYAKOV LOOP

Motivation Lattice QCD an	id magnetic fields Lattice simulat	ions Summary & Conclusions	References
0000 0000	0000000	00 00	

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
000	0000	000000000	00	

000 0000 000000 00	Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
	000	0000	00000000	00	

$$C(x,x') = \frac{1}{m_\pi^3} \left\langle \ \bar{\psi}\psi(x)P(x') \ \right\rangle_c$$

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
		000000000		

$$C(x,x') = \frac{1}{m_{\pi}^3} \left\langle \bar{\psi}\psi(x)P(x') \right\rangle_c$$

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
		000000000		

$$C(x,x') = \frac{1}{m_{\pi}^3} \left\langle \bar{\psi}\psi(x)P(x') \right\rangle_c$$

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
		000000000		

$$C(x,x') = \frac{1}{m_{\pi}^3} \left\langle \ \bar{\psi}\psi(x)P(x') \ \right\rangle_c$$

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
		000000000		

 $P(x)_{T,B}$ is broader than the chiral condensate.

$$C(x,x') = \frac{1}{m_{\pi}^3} \left\langle \ \bar{\psi}\psi(x)P(x') \ \right\rangle_c$$

Interaction with *P* causes the dips! (Local inverse magnetic catalysis)

000 0000 0000000 00	Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
	000	0000	00000000	00	

000 0000 00000 00	Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
	000	0000	000000000	00	

Motivation Lat	ttice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
000 00	000	00000000	00	

Motivation Lat	ttice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
000 00	000	00000000	00	

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
000	0000	000000000	00	

Electric currents: $\mathbf{J} \sim \mathbf{ abla} imes \mathbf{B}$

	References
000 0000 0000 00 00	

ELECTRIC CURRENTS: $\mathbf{J} \sim \boldsymbol{ abla} imes \mathbf{B}$

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
000	0000	000000000	00	

ELECTRIC CURRENTS: $\mathbf{J} \sim \mathbf{ abla} \times \mathbf{B}$

Figure 4: Lattice electric currents for RHIC-like ($\sqrt{eB} = 0.1 \text{ GeV}$) and LHC-like ($\sqrt{eB} = 0.5 \text{ GeV}$) magnetic fields, respectively.

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
000	0000	0000000000	00	

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
000	0000	0000000000	00	

$$\frac{1}{\mu_0}\mathbf{B} = \mathbf{H} + \mathbf{M} \qquad \mathbf{J}_m = \mathbf{\nabla} \times \mathbf{M}$$

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
000	0000	0000000000	00	

$$rac{1}{\mu_0} \mathbf{B} = \mathbf{H} + \mathbf{M} \qquad \mathbf{J}_m = \mathbf{
abla} imes \mathbf{M}$$

Linear response term:

 $\mathbf{M} \approx \chi_m \mathbf{H}$

000 0000 0000000 00	Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
	000	0000	0000000000	00	

$$rac{1}{\mu_0} \mathbf{B} = \mathbf{H} + \mathbf{M} \qquad \mathbf{J}_m = \mathbf{
abla} imes \mathbf{M}$$

Linear response term:

$$\begin{split} \mathbf{M} &\approx \chi_m \mathbf{H} \\ \frac{\chi_m}{1 + \chi_m} \mathbf{\nabla} \times \mathbf{B} = \mathbf{J}_m \end{split}$$

000 0000 0000000 00	Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
	000	0000	0000000000	00	

$$rac{1}{\mu_0} \mathbf{B} = \mathbf{H} + \mathbf{M} \qquad \mathbf{J}_m = \mathbf{
abla} imes \mathbf{M}$$

Linear response term:

$$\begin{split} \mathbf{M} &\approx \chi_m \mathbf{H} \\ \frac{\chi_m}{1 + \chi_m} \mathbf{\nabla} \times \mathbf{B} = \mathbf{J}_m \end{split}$$

	D and magnetic fields	Lattice simulations	Summary & Conclusions	References
0000 0000		000000000	00	

$$rac{1}{\mu_0} {f B} = {f H} + {f M} \qquad {f J}_m = {f
abla} imes {f M}$$

Linear response term:

Motivation	attice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
000 C	0000	0000000000	00	

$$rac{1}{\mu_0} {f B} = {f H} + {f M} \qquad {f J}_m = {f
abla} imes {f M}$$

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
		0000000000		

The divergence is independent of T: $\chi_m^r(T) \equiv \chi_m(T) - \chi_m(0)$

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
		0000000000		

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
000	0000	00000000000	00	

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
				ľ

Great agreement other predictions / Bali, Endrődi, and Piemonte 2020

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
000	0000	0000000000	00	

$$\left. \frac{\partial J^5}{\partial \mu} \right|_{\mu=0} = C_{\rm CSE} \ eB$$

See the talk by C. Garnacho (Tuesday

at 17:40).

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
000	0000	0000000000	00	

$$\left. \frac{\partial J^5}{\partial \mu} \right|_{\mu=0} = C_{\rm CSE} \ eB$$

See the talk by *P* E. Garnacho (Tuesday at 17:40).

 $16^{3} \times 6$

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
000	0000	000000000	00	

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
000	0000	000000000	00	

What about CME? Work in progress!

Summary & Conclusions

000 0000 0000000 0	Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
	000	0000	000000000	00	

	Wollvation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
000 0000 000000 0 0	000	0000	000000000	00	

• Richer scenario with B(x) (dips, electric currents, etc.)

		cumuly a considerence	ricici checo
0000 0000	000000000	00	

- Richer scenario with B(x) (dips, electric currents, etc.)
- Observables change significantly due to B(x)

Motivation Lat	ttice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
000 00	000	000000000	00	

- Richer scenario with B(x) (dips, electric currents, etc.)
- Observables change significantly due to B(x)
- New method to extract χ_m using $\mathbf{J}(x)$ and Maxwell's eqs.
| | | cumuly a considerence | ricici checo |
|-----------|-----------|-----------------------|--------------|
| 0000 0000 | 000000000 | 00 | |

SUMMARY & CONCLUSIONS

- Richer scenario with B(x) (dips, electric currents, etc.)
- Observables change significantly due to B(x)
- New method to extract χ_m using J(x) and Maxwell's eqs.
- CSE does not feel the inhomogeneity of B (CME?)

000 0000 0000000 0	Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
	000	0000	000000000	0•	

SUMMARY & CONCLUSIONS

- Richer scenario with B(x) (dips, electric currents, etc.)
- Observables change significantly due to B(x)
- New method to extract χ_m using J(x) and Maxwell's eqs.
- CSE does not feel the inhomogeneity of *B* (CME?)
- *B*(*x*) is important to capture the correct physics in peripheral HICs (applications to QCD models, hydrodynamics, etc.)

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References
000	0000	000000000	00	

SUMMARY & CONCLUSIONS

- Richer scenario with B(x) (dips, electric currents, etc.)
- Observables change significantly due to B(x)
- New method to extract χ_m using J(x) and Maxwell's eqs.
- CSE does not feel the inhomogeneity of B (CME?)
- *B*(*x*) is important to capture the correct physics in peripheral HICs (applications to QCD models, hydrodynamics, etc.)

धन्यवाद!

Motivation	Lattice QCD and magnetic fields	Lattice simulations	Summary & Conclusions	References

BIBLIOGRAPHY I

References

- Deng, Wei-Tian and Xu-Guang Huang (2012). "Event-by-event generation of electromagnetic fields in heavy-ion collisions". In: <u>Physical Review C</u> 85.4, p. 044907.
- Cao, Gaoqing (2018). "Chiral symmetry breaking in a semilocalized magnetic field". In: <u>Physical Review D</u> 97.5, p. 054021.
- Bali, Gunnar S, Gergely Endrődi, and Stefano Piemonte (2020). "Magnetic susceptibility of QCD matter and its decomposition from the lattice". In: Journal of High Energy Physics 2020.7, pp. 1–43.