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PERIPHERAL HICS

√
eB ∼ 0.1 - 0.5 GeV
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HOW DOES B LOOK LIKE IN HIC?

Figure 1: Spatial distributions B (left) and E (right) fields for an impact
parameter b = 10 fm. Deng and Huang 2012.

Caveats:

• highly non-homogeneous background.

• //E////////leads ///to //////sign ////////////problem.

• ////No /////////////Minkoswki///////time ////////////evolution ///in ////////lattice
///////QCD.

B changes Tc:
could the system be
in different phases
at different x?
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LATTICE QCD IN A NUTSHELL

〈 O 〉 =
1

Z

∫
Dψ̄DψDA Oe−S[ψ̄,ψ,A] −→ 1

Z

∫
DAdet

[
/D(A) +m

]
Oe−Sg[A]

• quarks ψ(x) x ∈ R −→ ψ(n) n ∈ Z
• gluons Aµ −→ Uµ = eiagA

b
µTb ∈ SU(3)

• (anti-)periodic BC

1. Generate samples {O1,O2, ...,ON} with a probability
det
[
/D(A) +m

]
e−Sg using Monte Carlo steps.

2. Calculate averages 〈 O 〉 = (1/N)
∑N
i=1Oi

• magnetic field B −→ uµ = eiaqAµ ∈ U(1) (BACKGROUND!)
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UNIFORM MAGNETIC FIELD ON THE LATTICE

B =∇× A

Ay = Bx

periodic boundary conditions

Flux quantization in a box

qB =
2πNb
LxLy

ux =

{
e−iqBLxy if x = Lx − a
1 if x 6= Lx − a

uy = eiaqBx

uz = 1

ut = 1

5
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INHOMOGENEOUS MAGNETIC FIELD ON THE LATTICE

B =
B

cosh
(
x−Lx/2

ε

)2 ẑ

Motivated by HIC scenarios Deng and

Huang 2012, Cao 2018.

qB =
πNb

Lyε tanh
(
Lx
2ε

) Nb ∈ Z

ux =

{
e−2iqBεy tanh(Lx2ε ) if x = Lx − a
1 if x 6= Lx − a

uy = eiaqBε[tanh( x−Lx/2ε )+tanh(Lx2ε )]

uz = ut = 1

6
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THE SIMULATION SET UP

• Nf = 2 + 1 improved staggered fermions with physical masses;

• Lattices: 163 × 6 243 × 8 283 × 10 363 × 12 −→
continuum limit (lattice spacing→ 0, V = const.);

• Magnetic field

B =
B

cosh

(
x− Lx/2

ε

)2 ẑ eB =
3πNb

Lyε tanh

(
Lx
2ε

) ε ≈ 0.6 fm

strength 0 GeV ≤
√
eB ≤ 1.2 GeV −→ magnetars, HIC and early

universe.

• Temperature −→ 68 MeV ≤ T ≤ 300 MeV (crossover at Tc ∼ 155

MeV).

• Quantities: Σ(x)T,B P (x)T,B J(x)T,B .

7
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CHIRAL CONDENSATE

8
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CHIRAL CONDENSATE

Enchancement of the condensate: magnetic catalysis.
8
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CHIRAL CONDENSATE

Σ(x)T,B is deformed (dips appear!).
8
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POLYAKOV LOOP

P (x)T,B is broader than the chiral
condensate.

C(x, x′) =
1

m3
π

〈
ψ̄ψ(x)P (x′)

〉
c

Interaction with P causes the dips!
(Local inverse magnetic catalysis)

9
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INHOMOGENEOUS vs UNIFORM CASE

We compare ψ̄ψ(x,B) and ψ̄ψ(B).

10
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ELECTRIC CURRENTS: J ∼∇× B

Figure 4: Lattice electric currents for RHIC-like (
√
eB = 0.1 GeV) and

LHC-like (
√
eB = 0.5 GeV) magnetic fields, respectively.
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(BARE) MAGNETIC SUSCEPTIBILITY

1

µ0
B = H + M Jm =∇×M

Linear response term:

M ≈ χmH
χm

1 + χm
∇× B = Jm

The susceptibility contains an additive
divergence χm ∼ log(a)
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(RENORMALIZED) MAGNETIC SUSCEPTIBILITY

The divergence is independent of T : χrm(T ) ≡ χm(T )− χm(0)

•
χrm < 0:
diamagnetism

•
χrm > 0:
paramagnetism

Material χm

Al +2.2×10−5

Glass -1.13×10−5

QCD ∼3.7×10−3

Great agreement other predictions Bali, Endrődi, and Piemonte 2020
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THE CHIRAL SEPARATION EFFECT (CSE)

∂J5

∂µ

∣∣∣∣
µ=0

= CCSE eB
See the talk by E. Garnacho (Tuesday

at 17:40).
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SUMMARY & CONCLUSIONS

• Richer scenario with B(x) (dips, electric currents, etc.)

• Observables change significantly due to B(x)

• New method to extract χm using J(x) and Maxwell’s eqs.

• CSE does not feel the inhomogeneity of B (CME?)

• B(x) is important to capture the correct physics in peripheral
HICs (applications to QCD models, hydrodynamics, etc.)
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