Understanding the topological constituents of SU(3) gauge theory across the deconfinement transition

Sumit Shaw

The Institute of Mathematical Sciences

In collaboration with Sayantan Sharma.

February 10, 2023

Sumit Shaw ICPAQGP 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Outline

- Non-trivial holonomy, Calorons, Fermion zero modes.
- Motivation.
- ► Techniques used.
- Results.
- Further work.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Introduction

- ► The SU(N) gauge theory for N ≥ 3 undergoes a first order phase transition.
- The Polyakov loop is an order parameter for confinement-deconfinement(C-D) transition

$$\vec{P}(\vec{x}) \equiv P[exp(\int_0^\beta dx_0 \ \vec{A_0})] \tag{1}$$

The eigenvalues of the Polyakov loop is referred to as Holonomy. At spatial infinity, its holonomy, for SU(3) can be represented as the diagonal matrix in the periodic gauge.

$$\lim_{|\vec{x}| \to \infty} P(\vec{x}) = diag\{e^{2\pi i\mu_0}, e^{2\pi i\mu_1}, e^{2\pi i\mu_2}\}$$
(2)

 Non-trivial holonomy implies the eigenvalue of the Polyakov loop at spatial infinity

$$\lim_{|\vec{x}|\to\infty} P(\vec{x}) \neq e^{i\frac{2\pi k}{N}} 1, \quad k = 0, 1, \cdots, N-1$$
(3)

Sumit Shaw ICPAQGP 2023

- A SU(N) instanton at finite temperature (or calorons) can be decomposed into N constituent monopoles(or dyons), when the eigenvalues of Polyakov loop at spatial infinity is non-trivial [Kraan-van Baal, Lee-Lu(KvBLL)][T. C. Kraan and P. van Baal(1998),K. M. Lee and C. h. Lu(1998)].
- The solution was constructed through Nahm transformation that maps a Q = 1 solution of a SU(N) gauge theory to a Q = N solution in a compact U(1) theory.
- Dual manifold in this case is basically a circle S¹, where the holonomy is located.
- For SU(N) with Q = 1 Caloron there will be N fractional substructure. L, M_1, \dots, M_{N-1} dyons.

Sumit Shaw ICPAQGP 2023

- For well-separated dyons, their actions are a fraction of the total instanton action given as 8π²ν_m/g², where ν_m = μ_{m+1} − μ_m, with μ₃ = 1 + μ₀, ν_m's represents the fractions of the circle on which the eigenvalues of the holonomy are located.
- If instanton-dyons are well separated, the local holonomy at the position of the *ith* dyon [D. Diakonov, (2009)] with i = 1, 2, 3 can be written as

$$P(x_i) = diag[e^{i2\pi\mu_{i-1}}, e^{i\pi\mu_i + \mu_{i+1}}, e^{i\pi\mu_i + \mu_{i+1}}]$$
(4)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくつ

 In the confined phase at T ≤ T_c, where the average value of the Polyakov loop is close to zero, the instanton action is split evenly, between its constituent instanton-dyons, *v*₀ = *v*₁ = *v*₂ = 1/3 and corresponding
 *μ*₀ = 0, *μ*₁ = 1/3, *μ*₂ = 2/3.

Fermion Zero Modes

- Index theorem relates the zero modes of the Dirac operator with the topological constituents of the gauge field, i.e instantons.
- The location of the zero mode coincides with the topologically non-trivial gauge field background on which it is calculated.
- With the usual anti-periodic boundary condition that is with phase angle π, (ψ(t + β) = e^{iφ}ψ(t)) zero mode is located at the L-dyon. By changing the phase angle one can also locate two M-dyons for e.g. M-dyon can be calculated for ±π/3.

・ ロ ト ・ 西 ト ・ 日 ト ・ 日 ト

Action density(top) plot for the SU(3) caloron on logarithmic scale. the bottom-left and bottom-right are the zero modes associated with the monopole with an appropriately chosen phase angle for the fermionic boundary condition[hep-lat/9907001].

Sumit Shaw ICPAQGP 2023

- ► Overlap Dirac operator, D = 1 γ₅sign(H_W) has been used as a probe to find the zero modes since it satisfies an exact index theorem, even with finite lattice spacing.
- If one calculates the local Tr(P(x_i))/3 at the location of the dyon, for the L-dyons the real part is given as −1/3 and the imaginary part is zero. For M-dyons corresponding to the phase angle, ±π/3 the value of the local holonomy at their locations are 1/6 ± i/√12.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくつ

Motivation

- Topological constituents of QCD are believed to play a role in driving confinement. In order to produce confinement these topological constituents needs to interact with the P(x) and suppress its values.
- Instantons were previously shown to explain confinement in 2+1 dimensions but in 3+1 dimensions they do not couple with the Polyakov loop.
- Since the instanton-dyon solutions depend on the Polyakov loop, it might lead to confinement.
- In this work we focus on SU(3) gauge theory, which is much cleaner since C-D transition is first order rather than a crossover in QCD. We aim to look at any correlations between the instanton-dyons and the Polyakov loop.

Wilson flow

- The SU(3) gauge field configurations generated using Wilson action on a 32³ × 8 lattice.
- The gauge ensembles contains UV fluctuations, which make it harder to look for the topological constituents.
- Gradient flow [M. Luscher,(2010) [arXiv:1006.4518]] [hep-lat]] is one such smearing technique which helps remove those UV fluctuations and smoothen the configuration to observe topological objects.
- The gradient flow equation is given as,

$$\dot{V}_t(x,\mu) = -g_0^2[\partial_{x,\mu}S_W(V_t)]V_t(x,\mu), \quad V_t(x,\mu)|_{t=0} = U(x,\mu)$$
(5)

where t is the flow time, $U(x, \mu)$ are the initial gauge links. The gauge action is simply,

$$S_W = \frac{2N}{g_0^2} \sum_{x,\mu > \nu} (1 - \frac{1}{N} \operatorname{Re}(\operatorname{Tr} U(x)_{\mu\nu}))$$

Sumit Shaw

ICPAQGP 2023

Wilson flow

- We have considered $32^3 \times 8$ lattice for simulation at $T = 1.1 T_c$.
- A typical configuration, the left one is with UV fluctuations, after flow the fluctuations are significantly smoothened out as shown in the right.

Results

- This is a typical spatial distribution of the fermion zero mode density(scaled appropriately) for phase angle φ = π(blue) superimposed with the real part of the Polyakov loop after gradient flow at 1.1T_c.
- One can see the zero-mode peaked at the local minima of the Polyakov loop.

Results

- The first two pictures shown are the well-separated zero modes with different phase angles π(red) and -π/3(blue). The third one is typical overlapped modes(properly scaled).
- Well-separated modes are very rare to find. With the increase in temperature, M-dyons widen further only the L-dyon corresponding to the phase angle π remains.

イロト イポト イヨト イヨト

Further work

- Further improvement of statistics required to look for well-separated dyons and calculate the local Polyakov loop as a function from the zero-mode core.
- Further we need to study the same for SU(2) gauge theory and show how the correlations between fermion zero modes and the Polyakov loop changes with color.
- Since SU(2) phase transition is of 2nd order and for N > 2 transition is 1st order we expect to observe its effects in the correlations with the Polyakov loop.
- It will be also important to perform continuum and finite volume extrapolation in all such studies related to the topological objects.

Thank You.

Sumit Shaw ICPAQGP 2023