Introduction

Mathematical Tools

Local Unpinning

Vortex Avalanche

イロッ 人間 アイヨア イヨア

7-10 February 2023, @ICPAOGP, Puri

Conclusion o

Unpinning of Superfluid Vortices through (quasi) Neutron-Vortex Scattering and Pulsar Glitches

Deepthi Godaba Venkata

Based on: *Glitches due to quasineutron-vortex scattering in the superfluid inner crust of a pulsar;* Biswanath Layek, Deepthi Godaba Venkata and Pradeepkumar Yadav; Physical Review D 107, 023004 (2023).

Department of Physics, BITS - Pilani Pilani, Rajasthan, India

Deepthi Godaba Venkata (BITS Pilani)

Unpinning by Neutron-Vortex Scattering

Local Unpinning

Plan

Introduction

- 2 Mathematical Tools for Estimate of Glitch Size
- 3 Glitch through *Local* Unpinning
- 4 Exploring the Feasibility of Vortex Avalanche

6 Conclusion

Deepthi Godaba Venkata (BITS Pilani)

Unpinning by Neutron-Vortex Scattering

7-10 February 2023, @ICPAQGP, Puri 2/19

э.

Local Unpinning

Vortex Avalanche

Conclusion o

Introduction: Pulsar Glitches

The pulsar-based time-scale is comparable to that of atomic clocks. **Pulsar Glitches:** Sudden increase of rotational frequency¹.

- About 666 glitches have been observed in 208 pulsars.
- For example:
 - 30 glitches have been observed in Crab pulsar.
 - 24 glitches have been observed in Vela pulsar.
- Typical interglitch time is of few years.
- Glitch sizes $(\frac{\Delta\Omega}{\Omega}) \sim 10^{-11} 10^{-6}$.

Credit: https://minerva-access.unimelb.edu.au/handle/11343/36537.

¹ Updated catalogue of pulsar glitches : http://www.jb.man.ac.uk/pulsar/glitches/gTable.html Deepthi Godaba Venkata (BITS Pilani) Unpinning by Neutron-Vortex Scattering

Local Unpinning

Vortex Avalanche

Conclusion o

Crustquake Model of Glitches

- Oblateness, $\epsilon(t) = \frac{I_{zz} I_{xx}}{I_0}$
- Glitch size, $\frac{\Delta\Omega}{\Omega} = -\frac{\Delta I}{l_0} = |\Delta\epsilon|$ [*M. Ruderman, Nature (1969)*].
- But, the interglitch time is also proportional to $\Delta \epsilon$ [Baym and Pines, Annals of Physics (1971)].

Therefore, a larger glitch needs a longer waiting time, contrary to the observations.

Figure: Demonstration of change in oblateness

Deepthi Godaba Venkata (BITS Pilani)

Unpinning by Neutron-Vortex Scattering

7-10 February 2023, @ICPAQGP, Puri 4/19

イロト イヨト イヨト イヨ

Local Unpinning

Conclusion o

Structure of Neutron Star

Figure: Structure of a neutron star. Credit: Dany P Page Deepthi Godaba Venkata (BITS Pilani)

- Free neutrons in the inner crust are in a superfluid state.
- Vortex areal density $n_v = 4m_n\Omega/h \simeq 10^7 \mathrm{m}^{-2}(\Omega/\mathrm{s}^{-1}).$
- Vortices get pinned to irregularities, lattice points in NS's case.
- The superfluid's angular momentum, $I_f \Omega_p$ remains unchanged when pinned.
- Rest of the star corotates, with angular momentum $I_c\Omega_c(t)$, and slows down over time.

イロト イヨト イヨト イヨト

Vortex Unpinning Model

- Anderson suggested unpinning the vortices pinned by the magnetic flux tubes to nuclear sites in the inner crust's lattices as the cause of glitches [Anderson & Itoh, Nature (1975)].
- Assume at t = 0 vortices are pinned and $\Omega_c(t = 0) = \Omega_p$. A fraction of these vortices $\left(\frac{N_v}{N_{vt}}\right)$ get unpinned at $t = t_p$, resulting in pulsar glitches [Layek & Yadav, MNRAS (2020)].

$$\frac{\Delta\Omega}{\Omega} = \left(\frac{l_f}{l_c}\right) \left(\frac{t_p}{2\tau}\right) \left(\frac{N_v}{N_{vt}}\right). \tag{1}$$

Here, $\left(\frac{l_f}{l_c}\right)$ is the MI ratio of the bulk superfluid component and the rest of the star, and, $\tau = -(\Omega/2\dot{\Omega})$, is the characteristic age of the pulsar.

• The unpinning model needs a trigger mechanism.

Deepthi Godaba Venkata (BITS Pilani)

Unpinning by Neutron-Vortex Scattering

7-10 February 2023, @ICPAQGP, Puri 6/19

イロト 不得 トイヨト イヨト 二日

Vortex Unpinning Through Neutron-Vortex Scattering

• The total energy of a deformed pulsar [Baym and Pines, Annals of Physics (1971)],

$$E = E_0 + \frac{L^2}{2I} + A\epsilon^2 + B(\epsilon - \epsilon_0)^2$$
⁽²⁾

- Strain energy, $\Delta E = B\Delta \epsilon$ released through crustquake partially absorbed in cylindrical shell
- Thermally breaks some fraction of neutron Cooper pairs

excited neutron ($\sim E_f$) + pinned vortex ($-E_P$) \rightarrow de-excited neutron ($E_f - E_p$) + free vortex.

- The unpinned vortex moves outwards.
- Unpins other vortices through knock-on process, initiating an avalanche.

Deepthi Godaba Venkata (BITS Pilani)

Introduction

Unpinning by Neutron-Vortex Scattering

Figure: The vortex lines terminating on **the outer-inner crust boundary** defines the (average) height of the the affected pinning site (cylindrical shell).

Deepthi Godaba Venkata (BITS Pilani)

Unpinning by Neutron-Vortex Scattering

7-10 February 2023, @ICPAQGP, Puri 8/19

イロト イヨト イヨト

Local Unpinning

Vortex Avalanche

Conclusion o

Mathematical Tools

From the Vortex Unpinning model,

$$\frac{\Delta\Omega}{\Omega} = \left(\frac{l_f}{l_c}\right) \left(\frac{t_p}{2\tau}\right) \left(\frac{N_v}{N_{vt}}\right) = \left(\frac{l_f}{l_c}\right) \left(\frac{t_p}{2\tau}\right) \left(\frac{A_s}{2\pi R \Delta R}\right).$$

(3)

э.

Deepthi Godaba Venkata (BITS Pilani)

Unpinning by Neutron-Vortex Scattering

7-10 February 2023, @ICPAQGP, Puri 9/19

ヘロト 人間 トメヨトメヨト

Local Unpinning

Conclusion o

Mathematical Tool for finding the Volume of Affected Region

By energy balance

$$\mathsf{B}\Delta\epsilon = \mathsf{N}_{e}\Delta_{f} = \frac{\Delta_{f}^{2}}{\mathsf{E}_{f}}\mathsf{n}_{f}\mathsf{V}_{s},\tag{4}$$

Where,

B ($\sim 10^{48}$ erg) is a constant related to the modulus of rigidity of the crust,

 $\Delta\epsilon = 10^{-8}$ for a typical one-year inter-glitch time,

 $n_f \rightarrow$ Number density of the bulk superfluid neutrons,

 $\Delta_f \rightarrow$ Energy gap parameter,

 $E_f \rightarrow$ Fermi energy,

 $N_e
ightarrow$ Number of excited neutrons produced from Cooper-pair breaking.

Deepthi Godaba Venkata (BITS Pilani)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Figure: Excitation energy E_f , the gap parameter $\Delta_f(k_f)$ and **pinning energy per site** E_p as a function of Fermi momentum

Deepthi Godaba Venkata (BITS Pilani)

Unpinning by Neutron-Vortex Scattering

7-10 February 2023, @ICPAQGP, Puri 11/19

Local Unpinning

THERMALLY EFFECTED REGION	CYLINDRICAL SHELL
VOLUME	$h_s\simeq (R_s\delta_s)^{1/2}$
	$m{A_s}=2\pi(m{R_s}\delta_{m{s}})$
	$V_{m{s}}=$ 2 $\pi(m{R_s}\delta_{m{s}})^{3/2}$

N = A p	V _s n _v	$B\Delta\epsilon E_f n_V$
$N_V = A_S n_V$	$h_s =$	$\overline{n_f \Delta_f^2 (R_s \delta_s)^{1/2}}$

 $\frac{\Delta\Omega}{\Omega} \qquad \left(\frac{l_{f}}{l_{c}}\right) \left(\frac{t_{p}}{2\tau}\right) \left(\frac{R_{s}}{\Delta R}\right) \simeq 10^{-6} \left(\frac{\delta_{s}}{\Delta R}\right)$

Deepthi Godaba Venkata (BITS Pilani)

Unpinning by Neutron-Vortex Scattering

< □ ▷ < □ ▷ < Ξ ▷ < Ξ ▷ < Ξ ▷ < Ξ ○ Q ○
 7-10 February 2023, @ICPAQGP, Puri 12/19

Results

Table: Fermi momentum (k_f), the distance of the cylindrical shell from the center (R_s), thickness of the shell (δ_s), the number of unpinned vortices (N_v), and the order of magnitude of the glitch size ($\Delta\Omega/\Omega$) for the Vela pulsar through local unpinning by excited neutrons.

k_{f} (fm ⁻¹)	<i>Rs</i> (in km)	$\delta_{m{s}}$ (in meter)	N _v	$\left(\frac{\Delta\Omega}{\Omega}\right)$
0.2	10.3	0.87	$3.9 imes10^{13}$	$8.7 imes 10^{-10}$
0.8	10.2	0.01	$4.3 imes 10^{11}$	1×10^{-11}
1.2	9.9	0.05	$2.0 imes 10^{12}$	$5 imes 10^{-11}$

Deepthi Godaba Venkata (BITS Pilani)

Unpinning by Neutron-Vortex Scattering

7-10 February 2023, @ICPAQGP, Puri 13/19

э.

イロッ 人間 アイヨア イヨア

Intro	du	icti	on
initi C		icu	ULL
	00		

Local Unpinning

Results

Figure: The number of unpinned vortices (N_v) versus the Fermi momentum k_f ,

Deepthi Godaba Venkata (BITS Pilani)

Unpinning by Neutron-Vortex Scattering

7-10 February 2023, @ICPAQGP, Puri 14/19

Intro	du	icti	on
III U U	uu	icu	ULL

Local Unpinning

Result

Figure: The typical glitch size for a Vela-like pulsar caused by the local unpinning.

Deepthi Godaba Venkata (BITS Pilani)

Unpinning by Neutron-Vortex Scattering

Local Unpinning

Conclusion o

(5)

(6)

Vortex avalanche through proximity knock-on

- Instantaneous release of ($\sim 10^{18}$) is necessary for explaining ($\frac{\Delta\Omega}{\Omega} \sim 10^{-6}$).
- Proximity knock-on:

When intervortex distance, $d_v \rightarrow \eta d_v$ ($\eta < 1$), the unpinning probability for a single vortex can be written as

$$au_{tr} \propto oldsymbol{e}_{\overline{\eta d_{v}}}^{E_{\mathcal{D}}}$$

• Multiple, $N_{tr}^i = \delta_s \sqrt{n_v}$, triggers (in 1D) since a large number of vortices are unpinned from cylinderical shell region.

λ

$$\lambda_{tr} au_{tr} \propto N_{tr} e^{rac{E_p}{\eta d_V}}$$

where, N_{tr} is the cumulative number of triggers.

Deepthi Godaba Venkata (BITS Pilani)

Unpinning by Neutron-Vortex Scattering

7-10 February 2023, @ICPAQGP, Puri 16 / 19

イロト イボト イヨト

Local Unpinning

(7)

Vortex Avalanche

Table: A Few values of the Fermi momentum k_f at which the unpinning probability for a single vortex is enhanced due to multiple triggers.

k_{f} (fm ⁻¹)	$\lambda au_{\it tr}$	$\lambda_{tr}\tau_{tr}(N_{tr}=N_{tr}^{i})$
0.52	$\sim 10^{-3}$	\sim 1.0
1.14	$\sim 10^{-3}$	\sim 1.0

So, the glitch size for the Vela pulsar will be modified as

$$\Bigl(rac{\Delta\Omega}{\Omega}\Bigr)\simeq 10^{-6}\Bigl(rac{\delta_a}{\Delta R}\Bigr)$$

Here, δ_a is the width of the region of avalanche.

Deepthi Godaba Venkata (BITS Pilani)

Unpinning by Neutron-Vortex Scattering

7-10 February 2023, @ICPAQGP, Puri 17/19

イロト 人間ト イヨト イヨト

Conclusion

- Crustquake's strain energy is assumed to causes pair-breaking quasi-neutron excitations unpin a large number of vortices result in pulsar glitches.
- We find that Vela-like pulsars can results in glitches of size $\sim 10^{-11} 10^{-9}$.
- We also explored the possibility of a vortex avalanche triggered by the movement of the unpinned vortices. An estimate of the glitch size caused by an avalanche shows a favourable result.
- The time scales associated with various events are compatible with glitch observations.

Thank You!

Time Scales

- The energy deposition and vortex unpinning (n-n scattering time scale $\tau_{nn} \simeq 10^{-5}$ s only) is almost instantaneous [Layek & Yadav, MNRAS (2020)].
- The time $t_v \simeq v_r / \Delta R \sim 0.1$ s taken by the vortex to reach the outer crust.
- For avalanche, the whole process is expected to be completed within $\sim 10^{-6}$ s.

Thus, the time interval between the crustquake's glitches and the unpinning vortex is of order tenth of a second, i.e., they seem to overlapwith the current resolution [*Ashton et al., Nature Astronomy (2019)*].

In the case of vortex avalanche, the source of the larger glitch (i.e., vortex unpinning) will be easily identifiable.

3

イロッ 人間 アイヨア イヨア