

Measurement of exclusive vector meson photoproduction in pPb collisions with the CMS experiment

Kousik Naskar

On behalf of the CMS collaboration

7th February 2023

Ultra-peripheral Collisions (UPC)

 Z_1

Two relativistic particles interact electromagnetically $\overrightarrow{E}(t)$ by physically missing each other

>Impact parameter $b > R_1 + R_2$

Ions are source of EM field

 \succ Photon **flux** \propto \mathbb{Z}^2

➢ In the Weizsäcker-Wiliams approximation :

$$N(k,b) = \frac{Z^2 \alpha_e}{\pi^2} \frac{k}{(\hbar c)^2} \frac{1}{\gamma_L^2} [K_1^2(x) + \frac{1}{\gamma_L^2} K_0^2(x)]$$
Klein et al., PRC 60 (1999)
A. J. Baltz et al., Phys. Rep. 458 (2008)
N(k,b) is the photon flux, $x = \frac{kb}{(\gamma \hbar c)}, \ \gamma_L = \frac{E_A}{m_A}$

- Flux drops rapidly with increasing energy

No hadronic interaction

Pb nucleus or proton $v \approx c$ $b > R_1 + R_2$ Z, $\overrightarrow{E}(t) \perp \overrightarrow{B}(t)$

Schematic diagram of UPC

Vector Meson photoproduction in UPC

Photon-Nuclear Interaction (Signal)

- The upper limit of quasi-real photon energy is $\omega_{\text{max}} \approx \gamma_L / R_A$; $\gamma_L = E_A / m_A$
 - γ from p: $\omega_{max} \sim 1066 \text{ GeV}$
 - γ from Pb: $\omega_{max} \sim 48 \text{ GeV}$

- The virtuality for the photon is related to the radius of the emitting particle: $Q^2 \approx (\hbar c/R_A)^2$
 - γ from p: Q² \approx 250 MeV²
 - γ from Pb: Q² \approx 30 MeV²

Probing the target's gluon density

In leading logarithmic approximation of pQCD

$$\frac{d\sigma_{\gamma p \to \gamma p VM}}{dt} \bigg|_{t=0} = C(\mu^2) [xG(x,\mu^2)]^2$$

Region of interest for PDFs in pPb:

-Gluon distribution in the proton at low Bjorken-x (10⁻² to 10⁻⁴) and search for saturation effects

Nuclear shadowing in UPC PbPb

Exclusive Vector Meson (VM) photoproduction in pPb

CMS Detector

Exclusive Υ in ultraperipheral pPb at 5.02 TeV

Dimuon p_T cut: $0.1 < p_T < 1.0$ GeV/c

-Low p_T cut to have good signal/background ratio, high p_T cut to suppress background from **inclusive** Υ and **Proton Dissociation** (PD)

p_T² differential cross-section

• Result for $\Upsilon(nS)$: **b** = 6.0 ± 2.1(stat.) ± 0.3 (syst.) GeV⁻²

• Consistent with ZEUS measurement for $\Upsilon(1S)$: b = 4.3^{+2.0}_{-1.3} (stat.) GeV⁻² [PLB 708 (2012) 14]

Exponential slope-b provides information on the transverse density profile of the proton [JHEP 03 (2001) 045, PRD 58 (1998) 114001]

Rapidity dependence

- JMRT model : pQCD calculations at LO and NLO [JHEP 11 (2013) 085]
- fIPsat: CGC-based model for low-*x* gluon saturation [PRC 83 (2011) 065202, PRC 87 (2013) 032201]
- IIM: Colour dipole formalism [PLB 590 (2004) 199] with two sets of meson wave functions (BG and LCG), which also incorporates saturation effects [PRC 89 (2014) 025201, JPG 42 (2015) 105001]
- bCGC: model accounting for the t-dependence of the differential cross section [PRD 95 (2017) 054011, PRD 96 (2017) 094027]

Scaling with the photon-proton energy

Fit parameters of power law dependent cross section: $\sigma_{\gamma}(W_{\gamma}) = A \times (W/400)^{\delta}$

- CMS result: $\delta = 1.08 \pm 0.42$, A = 690 ± 184 pb
- ZEUS result: $\delta = 1.2 \pm 0.8$ [PLB 680 (2009) 4]
- \Rightarrow It is consitent with other experimental results and most predictions
- Combined fit to all measurements (black line) disfavour the LO pQCD calculations

K. Naskar (IOP Bhubaneswar)

Exclusive ρ in ultraperipheral pPb at 5.02 TeV

Complex signal extraction due to the interference with the $\omega(783)$ meson

Exclusive VM production in UPC, ICPAQGP '23

Results: Exclusive $\rho(770)^0$ photoproduction at 5.02 TeV

Left plot is fitted with an exponential function $Ae^{(-b|t|+c|t|^2)}$ - CMS result: b = 9.2 ± 0.7(stat.) GeV⁻², c = 4.6 ± 1.6(stat.) GeV⁻⁴

From Regge formula $b = b_0 + 2\alpha \ln(W_{\nu p}/W_0)^2$

- CMS result: $\alpha = 0.28 \pm 0.11$ (stat) ± 0.12 (syst) GeV⁻²,
- \Rightarrow Consistent with Regge expectation [PR 101 (1983) 169] and ZEUS value [EPJC 2 (1998) 247]

Scaling with the photon-proton energy

- Cross-section: $\sigma = 11 \pm 1.4 \text{ (stat)} \pm 1.0 \text{ (syst)} \mu \text{b}$ (within $W_{\gamma p}$: 29–213 GeV and 0 < |t| < 0.5 GeV²)
- Results consistent with measurements at HERA [EPJC 2 (1998) 247, NPB 463 (1996) 3]
- Fit parameters of power law dependent cross section: $\sigma_{\rho}(W_{\gamma p}) = \alpha \times (W_{\gamma p})^{\delta}$ $\delta = 0.24 \pm 0.13 \text{ (stat)} \pm 0.04 \text{ (syst)}$

Summary and Outlook

- 1st measurement of $\Upsilon(nS)$ and $\rho(770)^{0}$ photoproduction in pPb collisions
- These cross-section measurements provide constraints on the evolution of the gluon density in the proton at low Bjorken-x
- Stay tuned for new exclusive quarkonium measurements with the large Run 2 data samples!

Thank you for attention!

Event Selection

> Data from pPb collisions at $\sqrt{S_{NN}} = 5.02$ TeV in 2013

> Integrated luminosities: 32.6 nb⁻¹ for Υ and 16.9 μ b⁻¹ for ρ

- ➤ Mass cut: 9.1 < Mass_{µµ} <10.6 GeV</p>
- Exclusivity Cut: -(N_{Tracks}=2, trk p_T > 0.1 GeV/c) -Leading tower Energy in HF calorimeter < 5.0 GeV</p>

➤ Muon selection

≻Single muon Cut:

- To have good muon efficiency μ^+ , $\mu^- p_T > 3.3$ GeV/c, $|\eta| < 2.2$

➤ Y selection

> Dimuon p_T Cut:

-Low p_T cut to have good signal/background ratio, high p_T cut to suppress background from **inclusive** Υ and **Proton Dissociation** (PD) -Dimuon p_T : 0.1 < p_T < 1.0 GeV/c

$\rho(770)^{0}$ selection

- > Mass cut: $0.5 < Mass_{\pi\pi} < 1.2 \text{ GeV}$
- Exclusivity Cut:

 Opposite sign 2 tracks of pion in an event (N_{Tracks}=2)
 Leading tower Energy in HF<3.0 GeV, HE<1.95 GeV
 CASTOR<9 GeV, ZDC⁺<500 GeV, ZDC⁻<2000 GeV

Pion selection Single pion Cut:

- To have good pion efficiency π^+ , $\pi^- p_T^{\text{Leading}} > 0.4 \text{ GeV/c and } p_T^{\text{Subleading}} > 0.2 \text{ GeV/c}$, $|\eta| < 2.0$

$\succ \rho^0$ selection

- > $(\pi^+\pi^-) p_T$ Cut:
- -Low p_T cut to have good signal/background ratio, high p_T cut to suppress background from **inclusive** ρ and **Proton Dissociation** (PD) - $(\pi^+\pi^-) p_T^{-2}: 0.025 < p_T^{-2} < 1.0 \text{ GeV}^2/c^2$