

Measurement of leading charged-particle jet properties in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV with ALICE

Prottoy Das (Bose Institute) On behalf of the ALICE Collaboration

International Conference on Physics and Astrophysics of Quark Gluon Plasma (ICPAQGP-2023)

February 7, 2023

Outline

Motivation

- ✤ Jet observables
- ✤ Analysis details
- Results and discussion
- ***** Summary

Motivation

- Collimated showers of particles produced from the fragmentation and hadronization of hard-scattered partons
- Considered as the proxy to the initial hard-scattered partons and are expected to reflect the parton properties
- Jets in p-Pb collisions:
 - Provide a baseline measurement for heavy-ion studies
 - > Test the impact of cold nuclear matter (CNM) effects¹
 - Offer possibility to address and understand the possible medium formation in small collision systems

Jet observables

✤ Mean charged-particle multiplicity within a leading charged-particle jet¹:

$$< N_{\rm ch} > (p_{\rm T, jet}^{\rm ch}) = \frac{1}{N_{\rm jets}} \sum_{i=1}^{N_{\rm jets}} N_{\rm ch}^{i} (p_{\rm T, jet}^{\rm ch})$$

Charged-particle jet fragmentation function¹:

$$z^{
m ch} = rac{p_{
m T, track}}{p_{
m T, jet}^{
m ch}}$$

where $p_{T, \text{ track}} = p_T$ of jet constituent

□ These intra-jet properties are sensitive to the details of parton showering processes

Analysis details

Collision system: p-Pb Center-of-mass energy $(\sqrt{s_{NN}})$: 5.02 TeV No. of events (minimum bias): Data: 515 M Simulation: 312 M, DPMJET¹ (GRV94²)

Correction for instrumental effects:

- Performed 2D unfolding
- ➢ 4D response matrix ($p_{T, jet}^{detector}$, Observable^{detector}, $p_{T, jet}^{truth}$, Observable^{truth})
- Bayesian method⁴ in RooUnfold⁵
- Unfolding parameter (no. of iterations)

 $| < N_{ch} >: 4, z^{ch}: 2$

Track selection: $p_{\text{T,track}} > 0.15 \text{ GeV}/c$, $|\eta_{\text{track}}| < 0.9$ Jet reconstruction: FastJet anti- k_{T} algorithm³, jet radius R = 0.4, leading jet $p_{\text{T, jet}}^{\text{ch}} = 10\text{-}100 \text{ GeV}/c$, $|\eta_{\text{jet}}^{\text{ch}}| < 0.5$

Underlying event (UE) estimation: Perpendicular cone method **UE subtraction:** Performed on a statistical basis after unfolding

Sources of systematic uncertainties:

- Uncertainty in tracking efficiency
- MC dependence
- Change in prior
- Choice of number of iterations
- Uncertainty in estimation of UE

^[1] Roesler et. al., https://doi.org/10.1007/978-3-642-18211-2_166
[2] A. Vogt, arXiv:hep-ph/9507241
[3] Matteo Cacciari et al JHEP04(2008)063

^[4] G. D'Agostini, https://doi.org/10.1016/0168-9002(95)00274-X[5] https://gitlab.cern.ch/RooUnfold/RooUnfold

Correction procedure

Results and discussion: <*N*_{ch}>

 $\Box < N_{ch} >$ increases monotonically with leading $p_{T, jet}^{ch}$

DPMJET (GRV94) explains the data within systematic uncertainties except at low $p_{T, jet}^{ch}$ (< 30 GeV/*c*)

Results and discussion: *z*^{ch}

DPMJET (GRV94) explains z^{ch} distributions in the intervals $20 < p_{T, jet}^{ch} < 30 \text{ GeV}/c$ and $40 < p_{T, jet}^{ch} < 60 \text{ GeV}/c$ within systematic uncertainties

Results and discussion: *z*^{ch} **scaling**

 \Box Scaling of jet fragmentation with leading $p_{T, jet}^{ch}$ is observed

The probability of jet constituents having a given fraction of jet p_T is independent of total jet p_T in this kinematic range

Summary

- ✓ First measurement of charged-particle jet properties (< N_{ch} >, z^{ch}) for leading $p_{T, jet}^{ch} = 10-100 \text{ GeV}/c$ in minimum bias p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV with ALICE
- ✓ DPMJET (GRV94) explains the data within systematic uncertainties
- ✓ Scaling of charged-particle jet fragmentation with leading $p_{T, jet}^{ch}$ observed

Outlook

- ✓ Comparison to minimum bias pp results \rightarrow cold nuclear matter effects
- ✓ Multiplicity dependent study in p-Pb collisions → possible medium formation

See Debjani's poster on "Multiplicity dependence of intra-jet properties in pp collisions at 13 TeV with ALICE", PoS ICHEP2022 (2022) 927

Thank you

DPMJET model

- Based on Dual Parton Model (DPM) for the description of soft and multi-particle interactions in high-energy collisions
- ✓ Can be used to simulate a wide range of hh, γ h, $\gamma\gamma$, AB and γ A collisions for energies ranging from few GeV to cosmic-ray interactions of the highest energy scale
- ✓ Soft processes \rightarrow pomeron exchange under the Regge theory scheme
- ✓ Hard processes \rightarrow perturbative parton scattering approach
- ✓ Hadronic interaction model for pp collisions → derived from PHOJET
- ✓ Fragmentation configurations \rightarrow acceded from PYTHIA Lund model
- The physics models and flexibility of DPMJET allows for the calculations of total, (quasi) elastic as well as production cross-sections for various colliding systems at high energies