Charm Fluctuations in (2+1)-flavor QCD at finite Temperature

Sipaz Sharma

for the HotQCD Collaboration

ICPAQGP-2023

- Strong interaction matter undergoes a chiral crossover at $T_{pc} = 156.5 \pm 1.5$ MeV. [HotQCD Collaboration, 2019]
- ▶ In heavy-ion collisions, relevant degrees of freedom change from partonic to hadronic in going from high temperature phase to temperatures below T_{pc}.

- ► Strong interaction matter undergoes a chiral crossover at $T_{pc} = 156.5 \pm 1.5$ MeV. [HotQCD Collaboration, 2019]
- ► In heavy-ion collisions, relevant degrees of freedom change from partonic to hadronic in going from high temperature phase to temperatures below T_{pc}.
- ► One of the questions heavy-ion experiments aim to answer is whether open-charm states melt beyond T_{pc} or at T_{pc}.

- Strong interaction matter undergoes a chiral crossover at $T_{pc} = 156.5 \pm 1.5$ MeV. [HotQCD Collaboration, 2019]
- ▶ In heavy-ion collisions, relevant degrees of freedom change from partonic to hadronic in going from high temperature phase to temperatures below $T_{\rm pc}$.
- ► One of the questions heavy-ion experiments aim to answer is whether open-charm states melt beyond T_{pc} or at T_{pc}.
- Existence of not-yet-discovered open-charm states can be predicted by comparing Lattice results with the HRG calculations.

- Strong interaction matter undergoes a chiral crossover at $T_{pc} = 156.5 \pm 1.5$ MeV. [HotQCD Collaboration, 2019]
- ► In heavy-ion collisions, relevant degrees of freedom change from partonic to hadronic in going from high temperature phase to temperatures below T_{pc}.
- ► One of the questions heavy-ion experiments aim to answer is whether open-charm states melt beyond T_{pc} or at T_{pc}.
- Existence of not-yet-discovered open-charm states can be predicted by comparing Lattice results with the HRG calculations.
- Signals of exotic charm states such as tetraquarks can shed light on how quarks arrange themselves inside the bound states.

▶ HRG describes a non-interacting gas of hadron resonances. It has been successful in describing the particle abundance ratios observed in experiments. $T < T_{pc}$ is the validity regime of HRG. [C. R. Allton et al., 2005]

- ▶ HRG describes a non-interacting gas of hadron resonances. It has been successful in describing the particle abundance ratios observed in experiments. $T < T_{pc}$ is the validity regime of HRG. [C. R. Allton et al., 2005]
- ► Charmed baryons and mesons contribute separately to the partition function of HRG, which in turn reflects in contributions to the pressure: $P_C(T, \vec{\mu})/T^4 = M_C(T, \vec{\mu}) + B_C(T, \vec{\mu})$.

- ▶ HRG describes a non-interacting gas of hadron resonances. It has been successful in describing the particle abundance ratios observed in experiments. $T < T_{pc}$ is the validity regime of HRG. [C. R. Allton et al., 2005]
- ► Charmed baryons and mesons contribute separately to the partition function of HRG, which in turn reflects in contributions to the pressure: $P_C(T, \vec{\mu})/T^4 = M_C(T, \vec{\mu}) + B_C(T, \vec{\mu})$.

$$M_{\rm C}(T, \overrightarrow{\mu}) = \frac{1}{2\pi^2} \sum_{i} g_i \left(\frac{m_i}{T}\right)^2 K_2(m_i/T) \cosh(Q_i \hat{\mu}_Q + S_i \hat{\mu}_S + C_i \hat{\mu}_C).$$
[A. Bazavov et al., 2014]

- ▶ HRG describes a non-interacting gas of hadron resonances. It has been successful in describing the particle abundance ratios observed in experiments. $T < T_{pc}$ is the validity regime of HRG. [C. R. Allton et al., 2005]
- ► Charmed baryons and mesons contribute separately to the partition function of HRG, which in turn reflects in contributions to the pressure: $P_C(T, \vec{\mu})/T^4 = M_C(T, \vec{\mu}) + B_C(T, \vec{\mu})$.

$$M_{\rm C}({\rm T},\overrightarrow{\mu}) = \frac{1}{2\pi^2} \sum_{\rm i} g_{\rm i} \left(\frac{m_{\rm i}}{{\rm T}}\right)^2 K_2(m_{\rm i}/{\rm T}) \cosh({\rm Q}_{\rm i}\hat{\mu}_{\rm Q} + {\rm S}_{\rm i}\hat{\mu}_{\rm S} + {\rm C}_{\rm i}\hat{\mu}_{\rm C}).$$

[A. Bazavov et al., 2014]

► For Baryons the argument of cosh changes to

►

- ▶ HRG describes a non-interacting gas of hadron resonances. It has been successful in describing the particle abundance ratios observed in experiments. $T < T_{pc}$ is the validity regime of HRG. [C. R. Allton et al., 2005]
- ► Charmed baryons and mesons contribute separately to the partition function of HRG, which in turn reflects in contributions to the pressure: $P_C(T, \vec{\mu})/T^4 = M_C(T, \vec{\mu}) + B_C(T, \vec{\mu})$.

$$M_{C}(T, \overrightarrow{\mu}) = \frac{1}{2\pi^{2}} \sum_{i} g_{i} \left(\frac{m_{i}}{T}\right)^{2} K_{2}(m_{i}/T) \cosh(Q_{i}\hat{\mu}_{Q} + S_{i}\hat{\mu}_{S} + C_{i}\hat{\mu}_{C}).$$

[A. Bazavov et al., 2014]

 \blacktriangleright For Baryons the argument of \cosh changes to

$$B_{i}\hat{\mu}_{B} + Q_{i}\hat{\mu}_{Q} + S_{i}\hat{\mu}_{S} + C_{i}\hat{\mu}_{C}.$$

•
$$\hat{\mu}_{X} = \mu/T$$
, $X \in \{B, Q, S, C\}$.

Pressure Calculation using HRG

Figure: [HotQCD Collaboration, 2014]

Sipaz Sharma

Bielefeld University

$$M_C(T, \overrightarrow{\mu}) = \frac{1}{2\pi^2} \sum_i g_i \left(\frac{m_i}{T}\right)^2 K_2(m_i/T) \cosh(Q_i \hat{\mu}_Q + S_i \hat{\mu}_S + C_i \hat{\mu}_C) \ .$$

- ► $K_2(x) \sim \sqrt{\pi/2x} e^{-x} [1 + O(x^{-1})]$. If $m_i \gg T$, then contribution to P_C will be exponentially suppressed.
- ▶ Λ_c^+ mass ~ 2286 MeV, Ξ_{cc}^{++} mass ~ 3621 MeV. At T_{pc} , contribution to B_C from Ξ_{cc}^{++} will be suppressed by a factor of 10^{-3} in relation to Λ_c^+ .

$$M_C(T,\overrightarrow{\mu}) = \frac{1}{2\pi^2} \sum_i g_i \left(\frac{m_i}{T}\right)^2 K_2(m_i/T) cosh(Q_i \hat{\mu}_Q + S_i \hat{\mu}_S + C_i \hat{\mu}_C) \ . \label{eq:MC}$$

- ► $K_2(x) \sim \sqrt{\pi/2x} e^{-x} [1 + O(x^{-1})]$. If $m_i \gg T$, then contribution to P_C will be exponentially suppressed.
- ▶ Λ_c^+ mass ~ 2286 MeV, Ξ_{cc}^{++} mass ~ 3621 MeV. At T_{pc} , contribution to B_C from Ξ_{cc}^{++} will be suppressed by a factor of 10^{-3} in relation to Λ_c^+ .
- Dimensionless generalized susceptibilities of conserved charges:

$$\chi^{\rm BQSC}_{\rm klmn} = \frac{\partial^{(\rm k+l+m+n)} \left[{\rm P} \left(\hat{\mu}_{\rm B}, \hat{\mu}_{\rm Q}, \hat{\mu}_{\rm S}, \hat{\mu}_{\rm C} \right) \, / {\rm T}^4 \right]}{\partial \hat{\mu}^{\rm k}_{\rm B} \, \partial \hat{\mu}^{\rm l}_{\rm Q} \, \partial \hat{\mu}^{\rm m}_{\rm S} \, \partial \hat{\mu}^{\rm n}_{\rm C}} \left|_{\overrightarrow{\mu} = 0} \right. \label{eq:chi}$$

$$M_C(T,\overrightarrow{\mu}) = \frac{1}{2\pi^2} \sum_i g_i \left(\frac{m_i}{T}\right)^2 K_2(m_i/T) \cosh(Q_i \hat{\mu}_Q + S_i \hat{\mu}_S + C_i \hat{\mu}_C).$$

 Dimensionless generalized susceptibilities of conserved charges are given by,

$$\chi^{\rm BQSC}_{\rm klmn} = \frac{\partial^{(\rm k+l+m+n)} \left[{\rm P} \left(\hat{\mu}_{\rm B}, \hat{\mu}_{\rm Q}, \hat{\mu}_{\rm S}, \hat{\mu}_{\rm C} \right) \, / {\rm T}^4 \right]}{\partial \hat{\mu}^{\rm k}_{\rm B} \, \partial \hat{\mu}^{\rm l}_{\rm Q} \, \partial \hat{\mu}^{\rm m}_{\rm S} \, \partial \hat{\mu}^{\rm n}_{\rm C} \, \partial \hat{\mu}^{\rm n}_{\rm C}} \bigg|_{\overrightarrow{\mu} = 0}.$$

$$\chi_{mn}^{BC} = B_{C,1} + 2^n B_{C,2} + 3^n B_{C,3} \simeq B_{C,1}.$$

-

$$M_C(T,\overrightarrow{\mu}) = \frac{1}{2\pi^2} \sum_i g_i \left(\frac{m_i}{T}\right)^2 K_2(m_i/T) \cosh(Q_i \hat{\mu}_Q + S_i \hat{\mu}_S + C_i \hat{\mu}_C).$$

 Dimensionless generalized susceptibilities of conserved charges are given by,

$$\chi_{klmn}^{BQSC} = \frac{\partial^{(k+l+m+n)} \left[P \left(\hat{\mu}_B, \hat{\mu}_Q, \hat{\mu}_S, \hat{\mu}_C \right) / T^4 \right]}{\partial \hat{\mu}_B^k \ \partial \hat{\mu}_Q^l \ \partial \hat{\mu}_S^m \ \partial \hat{\mu}_C^n} \bigg|_{\overrightarrow{\mu} = 0}.$$

$$\chi_{\text{moon}}^{BC} = B_{C,1} + 2^n B_{C,2} + 3^n B_{C,3} \simeq B_{C,1}.$$

▶ Ratio of $\chi_{mn}^{BC}/\chi_{kl}^{BC}$, will always be unity in HRG irrespective of the details of the baryon mass spectrum, for even (m + n), (k + l).

$$M_C(T,\overrightarrow{\mu}) = \frac{1}{2\pi^2} \sum_i g_i \left(\frac{m_i}{T}\right)^2 K_2(m_i/T) \cosh(Q_i \hat{\mu}_Q + S_i \hat{\mu}_S + C_i \hat{\mu}_C).$$

 Dimensionless generalized susceptibilities of conserved charges are given by,

$$\chi_{klmn}^{BQSC} = \frac{\partial^{(k+l+m+n)} \left[P \left(\hat{\mu}_{B}, \hat{\mu}_{Q}, \hat{\mu}_{S}, \hat{\mu}_{C} \right) / T^{4} \right]}{\partial \hat{\mu}_{B}^{k} \partial \hat{\mu}_{Q}^{l} \partial \hat{\mu}_{S}^{m} \partial \hat{\mu}_{C}^{n}} \bigg|_{\overrightarrow{\mu} = 0}.$$

$$\chi_{\text{moon}}^{BC} = B_{C,1} + 2^n B_{C,2} + 3^n B_{C,3} \simeq B_{C,1}.$$

- ▶ Ratio of $\chi_{mn}^{BC}/\chi_{kl}^{BC}$, will always be unity in HRG irrespective of the details of the baryon mass spectrum, for even (m + n), (k + l).
- ▶ Ratios like $\chi_{1n}^{BC}/\chi_{1l}^{BC}$ will be unity for all temperatures, for odd n, l.

$$M_C(T,\overrightarrow{\mu}) = \frac{1}{2\pi^2} \sum_i g_i \bigg(\frac{m_i}{T}\bigg)^2 K_2(m_i/T) \mathrm{cosh}(Q_i \hat{\mu}_Q + S_i \hat{\mu}_S + C_i \hat{\mu}_C).$$

 Dimensionless generalized susceptibilities of conserved charges are given by,

$\chi^{\rm BQSC}_{\rm klmn} =$	$\partial^{(k+l+m+n)} [P(\hat{\mu}_B, \hat{\mu}_Q, \hat{\mu}_S, \hat{\mu}_C) / T]$	4]
	$\partial \hat{\mu}^{ m k}_{ m B} \partial \hat{\mu}^{ m l}_{ m Q} \partial \hat{\mu}^{ m m}_{ m S} \partial \hat{\mu}^{ m n}_{ m C}$	$ _{\overrightarrow{\mu}=0}$

$$\chi_{mn}^{BC} = B_{C,1} + 2^n B_{C,2} + 3^n B_{C,3} \simeq B_{C,1}.$$

- ▶ Ratio of $\chi_{mn}^{BC}/\chi_{kl}^{BC}$, will always be unity in HRG irrespective of the details of the baryon mass spectrum, for even (m + n), (k + l).
- ▶ Ratios like $\chi_{1n}^{BC}/\chi_{1l}^{BC}$ will be unity for all temperatures, for odd n, l.
- At present, we have gone upto fourth order in calculating various cumulants.

Simulation Details

Partition function of QCD with 2 light, 1 strange and 1 charm quark flavors is :

$$\mathcal{Z} = \int \mathcal{D}[U] \{ \text{det } D(m_l) \}^{2/4} \{ \text{det } D(m_s) \}^{1/4} \{ \text{det } D(m_c) \}^{1/4} e^{-S_g} \}$$

This can be used to calculate susceptibilities in the BQSC basis.

- ▶ We used (2+1)-flavor HISQ configurations generated by HotQCD collaboration for $m_s/m_l = 27$ and $N_\tau = 8$.
- ▶ We treated charm-quark sector in the quenched approximation.
- ► We made use of 500 random vectors to calculate various traces per configuration, except for Tr $\left(D^{-1}\frac{\partial D}{\partial \mu}\right)$, for which we used 2000 random vectors.

Results: Melting of Open-Charm States

Results: Missing States

|C| > 1 states

We also want to explore the multiple charm sector. Ratio on left indicates that the contribution to partial pressure from |C| > 1 sector is indeed very small and difference on right quantifies it. For HRG,

$$\chi_4^{\rm C} - \chi_2^{\rm C} = 12B_{\rm C,2} + 72B_{\rm C,3}.$$

Conclusions & Outlook

- ▶ Deviations from HRG in the open-charm sector near $T_{pc} = 156.5 \pm 1.5$ MeV.
- Analysis shows that there are missing states in the PDG record.
- Analyse $N_{\tau} = 12, 16$ to quantify the cut-off effects.
- Understand the dependence of cumulants on the hadron mass spectrum.