Measurement of electrons from beauty-hadron decays in pp collisions at \sqrt{s} = 2.76 TeV to 13 TeV with ALICE

Vivek Kumar Singh* for the ALICE Collaboration *Variable Energy Cyclotron Centre, HBNI

8th International Conference on Physics and Astrophysics of Quark Gluon Plasma (ICPAQGP-2023)

7-10 Feb 2023 - PURI, INDIA

Motivations

Charm and beauty quarks (heavy quarks)

- Due to their large masses, are produced in the initial hard scattering processes at the early stage of the collisions
- They witness the full evolution of the produced medium (quark-gluon plasma) in ultra-relativistic heavy-ion collisions
- Traverse in the medium undergoing elastic and inelastic collisions with the constituents of the medium leading to energy loss
- Excellent probes to investigate quark-gluon plasma (QGP)

Nuclear Physics A (987) 144-201

Open heavy-flavour production

- *M*_{c,b} (1.3, 4.2 GeV/*c*²) >> QCD scale parameter (Λ_{QCD} ≈ 0.2 GeV)
- Production cross-section is calculable perturbatively down to low $p_{\rm T}$ based on factorization approach

$$d\sigma_{AB \to C}^{hard} = \sum_{a,b} f_{a/A}(x_a, Q^2) \otimes f_{b/B}(x_b, Q^2) \otimes d\sigma_{ab \to c}^{hard}(x_a, x_b, q^2) \otimes D_{c \to C}(z, Q^2)$$
Parton Distribution Function (PDF)
Partonic hard scattering
cross-section
Fragmentation
function

pp collisions

- Heavy-quark production cross sections are important to test pQCD calculations
- Baseline for measuring nuclear modification in p-A, A-A collisions

p—Pb collisions

• Studies provide access to cold nuclear matter effects

Pb—Pb collisions

 Studies allow us to investigate the QGP effects on heavy-quarks traversing the medium Presentation in detail by Ravindra Singh & Renu Bala

3

Beauty-electron identification technique

A Large Ion Collider Experiment (ALICE)

Inner Tracking System(ITS)

- Track reconstruction
- Vertex determination

Time Projection Chamber (TPC)

- Track reconstruction
- Particle identification (PID) via specific energy loss dE/dx

Time-of-Flight (TOF) detector

- PID via time of flight
- **Electro Magnetic Calorimeter(EMCal)**
- Trigger
- PID via energy deposited in the EMCal per track momentum, E/p

Central barrel coverage : $|\eta| < 0.9$ **EMCal** TPC TOF

<u>V0 Detector</u>

- Triggering and multiplicity measurement

Electron identification in TPC, TOF and EMCal

- Electron identification using TPC + TOF at low p_T
 - → TPC : $-1 < n_{\sigma,e} < 3$
 - → TOF : $-3 < n_{\sigma,e} < 3$

$$n_{\sigma,e} = \frac{(dE/dx)_{\text{measured}} - (dE/dx)_{\text{expected}}}{\sigma}$$

- Electron identification using TPC + EMCal at high p_T
 - Energy deposited in the EMCal per track momentum
 - → 0.85 < E/p < 1.2
 - → Hadrons are selected with $n_{\sigma,e} < -4$ and scaled based on E/p distribution to estimate hadron contamination arXiv:2209.04216v1
 - → Cut on the long-axis of the particle shower

Photonic electron estimation (Non-HFe)

- Majority of the non-HF electron background is from photonic electron sources

- → Dalitz decay of light neutral mesons π^0 and η
- → Photon conversion : most γ from π^0 convert into the detector material $\gamma \rightarrow e^- e^+$

- Unlike-Sign Pairs (N_{ULS}) [(e⁻, e⁺)] \rightarrow Correlated pairs (from actual decay) + Uncorrelated pairs

- Like-Sign Pairs(N_{LS}) [(e^- , e^-),(e^+ , e^+)] \rightarrow Uncorrelated pairs

Electrons from beauty-hadron decays

- The distance of closest approach in the transverse plane of reconstructed track to primary vertex is called the impact parameter d_0
- Beauty hadrons have a longer lifetime than other electron sources
 - → large decay length → wider d_0 distribution
 - beauty : cτ ~ 500 μm charm : cτ ~ 60-300 μm
- d_0 templates produced with Monte Carlo simulations and corrected to include realistic hadron fractions, p_T shapes and detector effects
- Stochastic extraction of raw yield using the impact parameter fit with maximum likelihood approach ^{Comp. Phys. Comm. 77, 2} (1993) 219-228
- $Fit = p_0 d_0^{b \to (c \to)e} + p_1 d_0^{c \to e} + p_2 d_0^{Dalitz e} + p_3 d_0^{Conversion e}$
- The amplitudes p_0 , p_1 , p_2 and p_3 are free parameters
- The fit takes into account the statistical fluctuations in data and the templates

$b \rightarrow e$ cross sections in pp collisions

9

- > 13 TeV : compatible within FONLL uncertainties p_T > 2 GeV/c
- Smaller uncertainty than FONLL
 - FONLL uncertainties dominated by factorization and renormalization scales

Data can constraint the pQCD models

Cross section ratios between different energies

10

Production cross section ratios in pp

- Agreement with FONLL within uncertainties
- \succ Correlated FONLL uncertainties are canceled out

 \geq Precise measurements at different energies can provide further constraints

Beauty production rate in pp collisions

Fraction of beauty-decay electrons to heavy-flavour decay electrons

- Measured data in agreement with FONLL
- \succ Beauty contribution is dominant with increasing p_{T}

Summary & Outlook

12

Summary

- Production cross sections of beauty-decay electrons are described by FONLL
 - Smaller uncertainties w.r.t model calculations
 - Data can constrain the pQCD models
- The ratio of production cross sections at different energies are in agreement with pQCD calculations
- The comparison of beauty-decay electron to heavy-flavour decay electron cross sections shows that beauty contribution is dominant at high p_T

Outlook

 Extend the pp 13 TeV measurement to high p_T (~ 35 GeV/c) with EMCal detector [work in progress]

Thanks for attention

Backup

13

Additional Slides

Production time scale

 $\tau_{\rm \,HF}\approx 0.05-0.1~fm/c$

 $au_{\text{QGP form}}$ (LHC) $\approx 0.3 \text{ fm/c}$

Ref: Fu-Ming Liu and Sheng-Xu Liu, PRC 89 (2014) 034906

QCD Scale parameter & coupling constant

$$\alpha_s(Q^2) = \frac{12\pi}{(33-2n_f)\log(Q^2/\Lambda^2)}.$$

Ref: Halzen & Martin Sec 7.10, Phys. 70 (2013) 159-209

FONLL

Properties of selected open heavy flavour hadrons

Particle	Quark	$I(J^P)$	Mass (GeV/c^2)	Decay mode	B.R. (%)	$c\tau$ (µm)
	$\operatorname{content}$					
D^+	cd	$\frac{1}{2}(0^{-})$	1.8696 ± 0.0002	$K^-\pi^+\pi^+$	9.13 ± 0.19	312 ± 2
		-		e^+ anything	16.07 ± 0.30	
				μ^+ anything	17.6 ± 3.2	
\mathbf{D}^0	$c\bar{u}$	$\frac{1}{2}(0^{-})$	1.8648 ± 0.0001	$K^{-}\pi^{+}$	3.87 ± 0.05	123 ± 1
		-		e^+ anything	6.49 ± 0.11	
				μ^+ anything	6.7 ± 0.6	
D_s^+	$c\bar{s}$	$0(0^{-})$	1.9685 ± 0.0003	$\phi \pi^+$	4.5 ± 0.4	150 ± 2
				e^+ anything	6.5 ± 0.4	
D^{*+}	$c\bar{d}$	$\frac{1}{2}(0^{-})$	2.0102 ± 0.0001	$\mathrm{D}^0~\pi^+$	67.7 ± 0.5	$(2.1 \pm 0.5) \times 10^{-6}$
$\Lambda_{ m c}$	udc	$0(\frac{1}{2}^+)$	2.2865 ± 0.0001	$\mathrm{pK}^{-}\pi^{+}$	5.0 ± 1.3	60 ± 2
B^+	ub	$\frac{1}{2}(\bar{0}^{-})$	5.2792 ± 0.0003	$J/\psi K^+$	0.1013 ± 0.0034	492 ± 2
		-		$l^+\nu_l$ anything	10.99 ± 0.28	
B^{0}	$d\bar{b}$	$\frac{1}{2}(0^{-})$	5.2795 ± 0.0003	${ m J}/\psi K_{ m S}^0$	0.0436 ± 0.0016	455 ± 2
		-		$l^+\nu_l$ anything	10.33 ± 0.28	
${ m B}^0_{ m s}$	$s\bar{b}$	$0(0^{-})$	5.3663 ± 0.0006	${ m J}/\psi\phi$	0.14 ± 0.05	441 ± 8
b hadrons				${\rm J}/\psi$ anything	1.16 ± 0.10	

- At leading order (LO), the only processes contributing to heavy-flavor production are gluon fusion and quark anti-quark annihilation.

- At next-to-leading order (NLO) processes such as gluon splitting or flavor excitation have to be considered in addition.

State of the art perturbative calculations of heavy-flavor production go even further in the sense that they calculate cross sections at fixed order with a next-to-leading-log resummation of higher orders in α_s .

Heavy flavour decay modes

• Due to short life time ($t \sim 10^{-12}$ s) of D, B mesons, they decay before reaching the detector, hence they have to be studied from their decay products.

Hadronic modes

- Full reconstruction of heavy-flavour hadrons via hadronic decay channels
- Invariant-mass analysis is done to obtain the raw yield

Semi-leptonic modes

- Substantial branching ratio : ~ 10%
- High-p_T leptons can be exploited for defining triggers using information from the ALICE EM calorimeter

$$\begin{split} D^{0} &\rightarrow K^{+} \pi^{-} , D^{+} \rightarrow K^{-} \pi^{+} \pi^{+} \\ \Lambda_{c}^{+} &\rightarrow p K^{-} \pi^{+} , \Lambda_{c}^{+} \rightarrow p \pi^{+} \pi^{-} \\ D_{s}^{+} &\rightarrow \pi^{+} \varphi \rightarrow \pi^{+} K^{-} K^{+} , \Sigma_{c}^{0,++} \rightarrow \Lambda_{c}^{+} \pi^{-, +} \\ &\Xi_{c}^{0} \rightarrow \Xi^{-} \pi^{+} , \Xi_{c}^{+} \rightarrow \Xi^{-} \pi^{+} \pi^{+} , \Omega_{c}^{0} \rightarrow \Omega^{-} \pi^{+} \end{split}$$

D, B
$$\longrightarrow \ell(e,\mu) \nu_{\ell} X$$

Reference : P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020), arXiv:2209.04216v1

15

Sources of non-heavy flavour electrons

Dominant source of background electrons

- Photonic electrons : $\pi^0 \rightarrow e^- e^+ \gamma$, $\pi^0 \rightarrow \gamma \gamma$, $\gamma \rightarrow e^- e^+$
 - → Electrons from decay of light neutral mesons (π^0 , η) and γ conversion
 - Subtracted from inclusive electron sample using photonic electron subtraction method
- Electrons from W^{\pm} and Z^0 boson decay : $W^{\pm} \rightarrow e^- \nu_e^{(-)}$ and $Z^0 \rightarrow e^- e^+$
 - → Significant at high p_T ($p_T \ge 20$)
 - Calculated with the POWHEG event generator and subtracted from the fully corrected cross section.

Negligible contributions

- Di-electron decays of light vector mesons (ρ, ϕ, ω) JHEP 10 (2018) 061
- Di-electron decays of quarkonia ($J/\psi,\Upsilon$) PLB 754 (2016) 81-93 , JHEP 10 (2018) 061
- Electrons from weak decays of $K^{0/\pm}: K^0 \to \pi^{\pm} e^{\mp} \nu_e^{(-)}$ $K^{\pm} \to \pi^{\pm} e^{\pm} \nu_e^{(-)}$ ($K^{\pm}_{e^3}$ decay) PLB 754 (2016) 81-93, JHEP 10 (2018) 061

Maximum likelihood and Least Square Fit methods

Maximum Likelihood Fit

- The parameters are estimated by finding the maximum of the likelihood function.

- Likelihood : $L = {}_{i}\Pi^{N} P_{i}(n_{i}/f_{i})$ n_{i} : observed counts in the ith bin f_{i} : value of the fit function at ith bin (expected counts)
- The Likelihood for a histogram is obtained by assuming a Poisson distribution in every bin.
- The probability of a particle landing in ith bin can be written as $p_i = f_i^{n_i} exp(-f_i) / n_i!$.
- The total probabilities for all bins will be product of probabilities of the individual bins which is nothing but L.
- To maximize L we take log of likelihood i.e $log(L) = {}_i \Sigma^N n_i log(f_i) f_i$
- Function f has the parameters say $\alpha_1, \alpha_2, ..., \alpha_n$ and root checks for what combinations of these α 's the log of the likelihood is maximum. That is what a log-likelihood fit does.

Least Square Fit

- if we start with bins having Gaussian distribution i.e $p_i = Cexp(n_{i-}f_i)^2/2\sigma_i^2$ instead of Poisson then we will end up with $log(L) = {}_i \Sigma^N (n_{i-}f_i)^2/\sigma_i^2 = \chi^2$, a default root fit option.

The Bethe-Bloch Equation

- Describes the average energy loss of charged particles when travelling through matter.

$$-\frac{dE}{dx} = \frac{4\pi e^4}{m_0} \frac{z^2}{v^2} NZ \left\{ ln \left(\frac{2m_0 v^2 \gamma^2}{l} \right) - \beta^2 - \delta^2 - \frac{2C}{Z} \right\}$$

z = Charge of primary particle v = Velocity of charged particle
N = Number density of absorber Z = Atomic Number of absorber
m_0 = Rest mass of electron $\beta = v/c, \gamma = 1/(1 - \beta)$
 δ =Density Correction factor C=Shell Correction factor

- $n\sigma^{TPC} = (dE/dx)_{theo} (dE/dx)_{measured}$ in terms of σ_{det} (TPC dE/dx resolution)
- TPC space point resolution : $r\phi = 300 \ \mu m$.
- TPC Momentum resolution : ~ 10% @ 50 GeV/c.
- dE/dx resolution : 5.5 @ low multiplicity and 8.6 @ high multiplicity.
- dE/dx only depends on β and independent of m
- $\langle dE/dx \rangle_{\text{measured}} = \langle dE/dx \rangle_{\text{collisional}} + \langle dE/dx \rangle_{\text{radiative}}$ (at few MeV rad > coll. loss)