Transport coefficient calculations at finite magnetic field Sabyasachi Ghosh (Physics Dept, IIT Bhilai)

Outline of talk

- Time line of the topic (Slide-2)
- Non-Dissipative part (Slide-3-4)
- Dissipative part (Slide 5-7)
- Dissipation at finite magnetic field (Slide 8)
- References (Slide 9)
- CM to QM to QFT (Slide 10-11)
- Concluding points (Slide 12)

Time line of Transport & Magnetic field in QGP topic

Accelerator Facilities ...past to Present to Future.....

Dissipative
Part
$$T_{D}^{\mu\nu} = W^{\mu}u^{\nu} + W^{\nu}u^{\mu} + \pi^{\mu\nu} + \Pi\Delta^{\mu\nu}$$

$$\prod_{\alpha} = -\zeta\mathcal{U}_{\zeta},$$
and $q^{\mu} = \kappa\mathcal{U}_{\kappa}^{\mu},$

$$\lim_{\alpha} = -\zeta\mathcal{U}_{\zeta},$$
and $q^{\mu} = \kappa\mathcal{U}_{\kappa}^{\mu},$

$$\lim_{\alpha} = -\zeta\mathcal{U}_{\zeta},$$

$$\lim_{\alpha} = -\zeta\mathcal{U}_{\zeta},$$

$$\lim_{\alpha} = -\zeta\mathcal{U}_{\zeta},$$

$$\lim_{\alpha} = -\zeta\mathcal{U}_{\kappa},$$

$$\lim_{\alpha} = -\zeta\mathcal{U}_{\kappa}$$

Kinetic Theory (Relaxation Time Approximation) for B=0

Kinetic Theory (Relaxation Time Approximation) for finite B

Shear Viscosity	 K. Tuchin, J. Phys. G 39, 025010 (2012) G.S. Denicol, X-G Huang, E. Molnar, G.M. Monterio, H.Neimi, Phys.Rev.D 98 (2018) 7, 076009 S. Ghosh, B. Chatterjee, P. Mohanty, A. Mukharjee, H. Mishra, Phys. Rev. D 100, 034024 (2019) P. Mohanty, A. Dash, and V. Roy, Eur. Phys. J. A 55, 35 (2019) A. Das, H. Mishra, and R. K. Mohapatra, Phys. Rev. D 100, 114004 (2019) M Kurian, S. Mitra, S. Ghosh, V. Chandra, Eur. Phys. J. C 79 (2019) 2, 134 A. Dash, S. Samanta, J. Dey, U. Gangopadhyaya, S. Ghosh, V. Roy, Phys. Rev. D 102, 016016 (2020) S. Rath, B.K. Patra, Phys.Rev.D 102 (2020) 3, 036011 J. Dey, S. Satapathy, P. Murmu, and S. Ghosh, Pramana 95, 125 (2021) J. Dey, S. Satapathy, A. Mishra, S. Paul, and S. Ghosh, Int. J. Mod. Phys. E 30, 2150044 (2021); S. Ghosh, N. Haque, Phys.Rev.D 105 (2022) 11, 11 U. Gangopadhyaya, V. Roy, JHEP 09 (2022) 114 +
Electrical Conductivity	 K. Hattori, D. Satow, Phys. Rev. D 94, 114032 (2016) A. Harutyunyan and A. Sedrakian, Phys. Rev. C 94, 025805 (2016) M. Kurian, V. Chandra, Phys.Rev.D 96 (2017) 11, 114026 K. Fukushima and Y. Hidaka, Phys. Rev. Lett. 120, 162301 (2018) A. Das, H. Mishra, R. K. Mohapatra, Phys. Rev. D 101, 034027 (2020) A. Bandyopadhyay, S. Ghosh, R. L. S. Farias, J. Dey, G. a. Krein, Phys. Rev. D 102, 114015 (2020) P. Kalikotay, S. Ghosh, N. Choudhory, P. Roy, S. Sarkar, Phys.Rev.D 102 (2020) 7, 076007 S. Rath, B.K. Patra, Eur.Phys.J.C 80 (2020) 8, 747 B. Chatterjee, R. Rath, G. Sarwar, R. Sahoo, Eur.Phys.J.A 57 (2021) 2, 45 K.K. Gowthama, M Kurian, V. Chandra, Phys.Rev.D 104 (2021) 9, 094037 S. Sarkar, S.P. Adhya, Phys.Scripta 97 (2022) 10, 104003 J. Dey, S. Samanta, S. Ghosh, S. Satapathy, Phys.Rev.C 106 (2022) 4, 044914 K. Singh, J. Dey, R Sahoo, S. Ghosh in poster presentation

Resistivity Matrix:

The *resistivity* is defined as the inverse of the conduc both are matrices,

$$\rho = \sigma^{-1} = \begin{pmatrix} \rho_{xx} & \rho_{xy} \\ -\rho_{xy} & \rho_{yy} \end{pmatrix}$$

 $\rho = \frac{1}{\sigma_{DC}} \begin{pmatrix} 1 & \omega_B \tau \\ -\omega_B \tau & 1 \end{pmatrix}^{\cdot}$

a

From the Drude model, we have

Electrical Conductivity Matrix:

$$\sigma = \frac{\sigma_{DC}}{1 + \omega_B^2 \tau^2} \begin{pmatrix} 1 & -\omega_B \tau \\ \omega_B \tau & 1 \end{pmatrix} \text{ with } \sigma_{DC} =$$

Concluding Bullet Points:

- Due to magnetic field multi component transport coefficients structure is expected (Parallel, Perpendicular & Hall)
- Two time scales (relaxation time and cyclotron time) will create an effective relaxation time in different direction/component
- Landau quantization effect will modify the transport coefficients values from its Classical values
- Apart from Landau quantization effect, QFT calculation can introduce a QFT version of cyclotron time

$$\widetilde{\tau}_c^{\perp} = \frac{\Gamma}{\Gamma^2 + \left(\mu - \sqrt{\mu^2 - 2eB}\right)^2} = \tau_c \left/ \left(1 + \frac{\tau_c^2}{\widetilde{\tau}_B^2}\right) \right.,$$

where,

$$\frac{1}{\tilde{\tau}_B} = (\mu - \sqrt{\mu^2 - 2eB}) = \frac{eB}{\mu} \left\{ 1 + \frac{eB}{2\mu^2} + \frac{(eB)^2}{2\mu^4} + \frac{5(eB)^3}{8\mu^6} + \cdots \right\} = \frac{1}{\tau_B} \left\{ 1 + \frac{1}{2\mu\tau_B} + \frac{1}{2(\mu\tau_B)^2} + \frac{5}{8(\mu\tau_B)^3} + \cdots \right\}$$

S. Satapathy, S. Ghosh, S. Ghosh, Phys.Rev.D 106 (2022) 3, 036006

