## **Dynamics of Heavy quark in Heavy-ion Collisions**



## Santosh Kumar Das School of Physical Science Indian Institute of Technology Goa Goa, India





7-10 Feb, PURI, INDIA



<u>OUTLINE</u>

## $\square R_{AA} vs v_2: Heavy quark diffusion$

- □ New observables
- **Heavy quark hadronization**
- Heavy quark as a probe of Initial stage

# Heavy Quark & QGP



#### SPS to LHC

 $\sqrt{s} = 17.3 GeV \ to \ 2.76 TeV$  ~100 times

 $T_i = 200 \ MeV \ to \ 600 \ MeV \ \sim 3 \ times$ 



 $\tau_{c,b} >> \tau_{QGP}$  $M_{c,b} >> T_0$ 

Produced by pQCD process (before equilibrium) (Early production)

They go through all the QGP life time

No thermal production

# Heavy quark physics at different scales



# Studying the HF dynamics in HIC



# $R_{AA}$ and $v_2$ Comparison with models



ALICE, JHEP 01 (2022) 174

Most of the models able to describe both  $R_{AA}$  and  $v_2$  in certain  $p_T$  domain

Simultaneous description of  $R_{AA}$  and  $v_2$  is still a challenge in the whole measured  $p_T$  and centrality ranges

# Impact of T dep. interaction on $R_{AA} - v_2$



## $R_{AA}$ vs. $v_2$ : T-dependence of transport coefficients

Different temperature dependence of the interaction may lead to different  $v_2$  for the same  $R_{AA}$ .



Semi-quark-gluon monopole plasma model increases  $\hat{q}$  around  $T_c$  and enhances hard probes'  $v_2$ .

Xu, Liao and Guylassi CPL. 32, 092501 (2015)

Bayesian model to data analysis [Xu et al., PRC (2018)]:



# Summary on the build-up of $v_2$ at fixed $R_{AA}$



 $R_{AA}$  and  $V_2$  are correlated but still one can have  $R_{AA}$  about the same while  $V_2$  can change up to a factor 2-3  $\gamma(T)$  + Boltzmann dynamics+ hadronization+ hadronic phase

# **Heavy quark diffusion**



He, Fries, Rapp, PRL,110, 112301 (2013)

Scardina, Das, Minissale, Plumari, Greco PRC,96, 044905 (2017)

 $2\pi T D_s \propto T^2$ , corresponds to a constant thermalization time.

#### Memory effect can impact the HQ thermalization

Ruggieri, Pooja, Jai Prakash, Das, PRD, 106 (2022)

# A systematic attempts are going on within the EMMI-RRTF and "JET-HQ" working groups to find a common agreement between different groups:



0.0

 $p_{T}(\tilde{G}eV)$ 

S. Cao et. al PRC 99, 054907 (2019) (JET-HQ)

p (GeV)

# **New observables:**



 $V_n(D)$  more correlated to  $v_n(N_{ch})$  than  $\epsilon_n$ 

Very large sensitivity to T dep. of Ds

#### This can put further constrain on heavy quark transport coefficients

Plumari, Coci, Minissale, Das, Sun, Greco PLB 805 (2020) 135460

## System size scan of D meson $R_{AA}$ and $v_2$



System size vs Eccentricity

R. Katz et. al, PRC, 102 (2021)

### **Angular De-correlation of***cc***bar:**



Zhu ,Xu, Zhuang, PRL100, 152301 (2008)



#### DDbar correlation is sensitive to energy loss mechanism

Nahrgang, Aichelin, Gossiaux, Werner PRC,90, 024907 (2014)

> DDbar correlation can disentangle different Energy loss mechanism

> > Cao, Qin, Bass PRC, 95 (2015)

#### **Hadronization: Coalescence plus Fragmentation**

Fragmentation function gives the probability to get a hadron from a parton:

$$f_H(p_T) = \sum_p f_p(p_T / z) D_{p \to H}(z)$$

<z>~0.9 for charm quark and <z>~0.5 for light quark

Coalescence is the convolution of two /three parton distribution folded by a wave function:



## **Heavy Baryon to meson ratio**

#### (Serve as a tool to disentangle different hadronization mechanisms)



Plumari, Minissale, Das, Cosi, Greco EPJC 78 (2018) 4, 348

He, Rapp, PRL 124 (2020) 042301

#### Impact of heavy baryon to meson ratio on heavy quark suppressions



R<sub>AA</sub> of D<sup>o</sup> decreases because part of charm quark makes coalescence in charmed Lambdas, while in pp charm quarks fragment mainly in D mesons

#### Minissale at.al (SQM-2019)

# Heavy quark as a probe of Initial stage

(Adapted from M. Ruggieri)







**Impact of Glasma phase** 

**Electromagnetic field** 

Vorticity

#### Initial Glasma in Pre-equilibrium phase can induce strong diffusion

Mrowczynski, EPJA 54 (2018) Ruggieri and Das, PRD98 (2018) Pooja et al. EPJP 137 (2022)







Boguslavski, Kurkela, Lappi and J. Peuron, JHEP (2020)

 $\frac{\text{Correlator method}}{\langle \dot{p}_{i}(t)\dot{p}_{i}(t')\rangle} = \frac{g^{2}}{2N_{c}}\langle E_{i}^{a}(t)E_{i}^{a}(t')\rangle$ 

Strong heavy quark diffusion in Glasma:

- \* Can affect the D-Dbar correlation
- **Strong diffusion enhance the R<sub>AA</sub> in AA**
- Leads to large v<sub>2</sub> to have the same R<sub>AA</sub>

#### Impact of Glasma phase on nucleus-nucleus collisions:





Sun, Coci, Das, Plumari, Ruggieri, Greco PLB, 798 (2019) 134933

## Heavy quark directed flow in EM fields



 ♦ Order of magnitude larger than light hardon v<sub>1</sub>

 Opposite v<sub>1</sub> for charm and anti-charm

 $\Delta v_1(\mathbf{D}) = \mathbf{v}_1(\mathbf{D}^0) - \mathbf{v}_1(\overline{\mathbf{D}}^0)$ 

Das, Plumari, Chartarjee, Scardina, Greco, Alam Phys. Lett. B, 768 (2017) 260

#### Heavy meson directed flow at RHIC & LHC:



### Heavy quark as a probe of initial stage: vorticity



Large directed flow of heavy meson than the light hadron.

Chatterjee and Bozer, PRL, 120 (2018)



Chatterjee and Bozer, PLB, 798 (2019)



Charm quark distribution is not tilted

Oliva, Plumari, Greco, JHEP (2021)



Oliva, Plumari, Greco, JHEP (2021)



- \* Yet to understand the  $\Delta v_1$  sign change from RHIC to LHC
- Computation of early stage EM field is very essential

Sun, Plumari, Greco, PLB, 861 (2021)



The splitting is larger as a function of momentum

Das, Soloveva, Song, Bratkovskaya Under preparation

#### D meson elliptic flow in presence of electromagnetic flow at RHIC



Das, Soloveva, Song, Bratkovskaya Under preparation

# **Conclusions and Perspectives:**

- **\*** Present calculations indicate  $\tau_{th} \sim 2-6$  fm/c for low  $p_T$  charm quark.
- More precision data and additional observables can further constrain the D<sub>s</sub>
  Heavy-light event-by-event correlation, System size scan, D-Dbar correlation, B meson ......
- **\*** Experimental data support coalescence plus fragmentation as hadronization
- Time evolution of EM field in HIC -> opposite sign of HF v1 from RHIC to LHC
- **Heavy quark diffusion in pre-equilibrium phase is crucial.**





# **Evolution: Boltzmann vs Langevin (Charm)**

Momentum evolution starting from a  $\delta$  (Charm) in a Box



In case of Langevin the distributions are Gaussian as expected by construction

In case of Boltzmann the charm quarks does not follow the Brownian motion

Das, Scardina, Plumari and Greco PRC,90,044901(2014)

# Momentum evolution starting from a $\delta$ (Bottom)



# Impact of memory on heavy quark thermalization



$$\sigma_p = \frac{1}{2} \langle (p_x(t) - p_{0x})^2 + (p_y(t) - p_{0y})^2 \rangle \qquad \qquad \sigma_p = \langle (p_T - \langle p_T \rangle)^2 \rangle$$

### Memory delay the thermalization time

Liu, Das, Greco, Ruggieri, PRD 103, 034029 (2021) Ruggieri, Pooja, Jai Prakash, Das, arxiv: 2203.06712 [hep-ph]