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Hydrodynamics in heavy-ion collisions

Hydrodynamics/Fluid dynamics: Dynamics of a system exhibiting
collective behaviour.

An effective theory describing the long-wavelength, low-frequency
limit of the microscopic dynamics of a system.

Little bangs in relativistic heavy-ion collision create de-confined
QCD matter.

This hot and dense matter in vacuum undergoes violent
expansion.

Relativistic hydrodynamics applied successfully to explain the
space-time evolution.

Several heavy-ion collision observables at RHIC and LHC are
explained quite accurately using hydrodynamic models.
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Anisotropic flow and viscosity

Role of Hydrodynamics:

Initial state spatial deformation
Hydro
====⇒Final state momentum anisotropy

Viscosity degrades conversion efficiency; necessary to explain data
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Relativistic fluid dynamics

We know that ρ(t, x⃗), v⃗(t, x⃗) and P are dynamical variables for
non-relativistic hydrodynamics.

For relativistic systems, the mass density ρ(t, x⃗) is not a good
degree of freedom.

For large kinetic energy, replace ρ(t, x⃗) by energy density ϵ(t, x⃗).

Similarly, v⃗(t, x⃗) should be replaced by

uµ =
dxµ

dτ
=

dt

dτ

dxµ

dt
=

1√
1− v⃗2

Å
1
v⃗

ã
= γ(v⃗)

Å
1
v⃗

ã
The fluid four-velocity uµ is timelike: u2 ≡ uµgµνu

ν = 1.

Hydrodynamic equations are essentially conservation equations:

Energy-momentum conservation: ∂µT
µν = 0.

Current conservation: ∂µN
µ = 0.

Tµν : Energy-momentum tensor, Nµ: Charge current.
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Relativistic ideal fluids

The energy-momentum tensor of an ideal fluid can be written in
terms of the available tensor degrees of freedom:

Tµν
(0) = c1u

µuν + c2g
µν

Local rest frame (LRF), uµLRF = (1, 0, 0, 0), implies

T 00
(0)LRF = ϵ0, T i0

(0)LRF = T 0i
(0)LRF = 0, T ij

(0)LRF = P0δ
ij

One can extract the scalars c1 and c2 in LRF

Tµν
(0)LRF = diag(ϵ0, P0, P0, P0) ⇒ c1 = ϵ0 + P0, c2 = −P0.

Energy-momentum tensor for the ideal fluid, Tµν
(0) is

Tµν
(0) = ϵ0u

µuν − P0∆
µν

∆µν = gµν − uµuν , uµ∆
µν = 0

Similarly, Nµ
(0) = n0 u

µ.
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Non-relativistic vs relativistic hydrodynamics

Consider incompressible non-relativistic fluid;
trivia: absolute incompressibility not allowed by relativity.

Assume that no conserved charges present in relativistic case.

Non-relativistic Relativistic

Continuity equation:
∂ρ

∂t
+ ∇⃗ · (ρv⃗) = 0 Dϵ+ (ϵ+ P )∂µu

µ = 0

Euler equation:

ρ

ï
∂v⃗

∂t
+ (v⃗ · ∇⃗)v⃗

ò
+ ∇⃗P = 0 (ϵ+ P )Duµ −∇µP = 0

ρ measures inertia of the non-rel. fluid D = uµ∂µ, ∇µ = ∆µα∂α

The EoM for relativistic fluid is given by ∂µT
µν = 0.

Inertia of the relativistic fluid is determined by (ϵ+ P ).

Remember, the entropy density is given by: s = (ϵ+ P )/T .
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Relativistic kinetic theory: let’s build intuition

Kinetic theory: calculation of macroscopic quantities by means of
statistical description in terms of distribution function.

Let us consider a system of relativistic particles of rest mass m
with momenta p and energy p0

p0 =
√
p2 +m2

For large no. of particles, introduce a function f(x, p) which gives
a distribution of the four-momenta p = pµ = (p0,p) at each
space-time point.

f(x, p)∆3x∆3p gives average no. of particles at any given time in
the volume element ∆3x at point x with momenta in the range
(p,p+∆p).

Statistical assumptions:

No. of particles contained in ∆3x is large (N ≫ 1).

∆3x is small compared to macroscopic volume (∆3x/V ≪ 1).
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Relativistic kinetic theory: Particle four-flow

To describe a non-uniform system, n(x) is introduced: n(x)∆3x is
avg. no. of particles in volume ∆3x at x.

Similarly particle flow j(x) is defined as the particle current along
(x,y,z) directions.

These two local quantities, particle density and particle flow
constitute a four-vector field: Nµ = (n, j)

With the help of distribution function, the particle density and
particle flow is given by:

n(x) =
g

(2π)3

∫
d3p f(x, p); j(x) =

g

(2π)3

∫
d3p v f(x, p)

where v = p/p0 is the velocity.

Particle four-flow can be written in a unified way

Nµ(x) =
g

(2π)3

∫
d3p

p0
pµ f(x, p)
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Relativistic kinetic theory: Energy-momentum tensor

Energy per particle is p0, the average can be written as

T 00(x) =
g

(2π)3

∫
d3p p0 f(x, p) =

g

(2π)3

∫
d3p

p0
p0 p0 f(x, p)

Similarly energy flow and momentum density are defined as

T 0i(x) =
g

(2π)3

∫
d3p p0 vi f(x, p); T i0(x) =

g

(2π)3

∫
d3p pi f(x, p)

For momentum flow (flow in direction j of momentum in direction
i), we have

T ij(x) =
g

(2π)3

∫
d3p pi vj f(x, p);

ñ
vj =

pj

p0

ô
Combining all this in compact covariant form:

Tµν(x) =
g

(2π)3

∫
d3p

p0
pµ pν f(x, p)
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Relativistic dissipative fluids

Fluids are in general dissipative; dissipation has to be included.

Define an equilibrium state ϵ = ϵ0, n = n0 (matching conditions).

uµuνδT
µν = 0, uµδN

µ = 0

δTµν ≡ Tµν − Tµν
(0) , δNµ = Nµ −Nµ

(0)

Most general form with dissipation:

Tµν = ϵuµuν − (P +Π)∆µν + 2u(µhν) + πµν , Nµ = nuµ + nµ

Orthogonality: uµh
µ = uµn

µ = uµπ
µν = uνπ

µν = ∆µνπ
µν = 0.

Freedom for LRF definition:

Tµν : 10, Nµ : 4 ⇒ Total : 14

ϵ : 1, P : 1, n : 1︸ ︷︷ ︸
EoS:1, 2−independent

, uµ : 3, Π : 1, hµ : 3, nµ : 3, πµν : 5 ⇒ Total : 17

Definition of velocity field to be specified.
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Local fluid rest frame definitions

Two natural definitions for fluid field.

Landau frame definition: uνT
µν = ϵuµ

uµ =
uνT

µν

uαuβTαβ
⇒ hµ = 0

Eckart frame definition: Nµ = nuµ

uµ =
Nµ

√
NαNα

⇒ nµ = 0

Landau frame condition more convenient.

Landau frame uniquely defined for multiple conserved charges.

Amaresh Jaiswal (NISER) ICPAQGP Student Day 12



Relativistic fluid dynamics

Conservation equations for energy-momentum and charge current.

Ideal Dissipative

Tµν = ϵuµuν − P∆µν Tµν = ϵuµuν − (P +Π)∆µν + πµν

Nµ = nuµ Nµ = nuµ + nµ

Unknowns: ϵ, P, n, uµ︸ ︷︷ ︸
1+1+ 1+ 3

= 6 ϵ, P, n, uµ, Π, πµν , nµ︸ ︷︷ ︸
1+1+ 1 + 3 + 1 + 5 + 3

= 15

Equations: ∂µT
µν = 0, ∂µN

µ = 0, EOS︸ ︷︷ ︸
4 + 1 + 1

= 6

Closed set of equations 9 more equations required

Here ∆µν = gµν − uµuν and Landau frame chosen: Tµνuν = ϵuµ.

Equations required for dissipative currents Π, πµν and nµ.
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Relativistic Navier-Stokes [Landau and Lifshitz, Fluid Mechanics, 1987]

Second law in covariant form: ∂µS
µ ≥ 0, where

Sµ = s uµ ; s =
ϵ+ P − µn

T
.

Demanding second-law from this entropy current,

πµν = 2 η σµν , Π = −ζ θ, nµ = κ∇µa

σµν≡ ∂⟨µuν⟩=∆µν
αβ ∂

αuβ, θ ≡ ∂µu
µ, ∇µ ≡ ∂⟨µ⟩=∆µα ∂α, a ≡ µ/T

∆µν
αβ ≡ 1

2
(∆µ

α∆
ν
β +∆µ

β∆
ν
α)−

1

3
∆µν∆αβ

η = βπ τR, ζ = βΠ τR, κ = βn τR

η: co-efficient of shear viscosity.

ζ: co-efficient of bulk viscosity.

κ: charge conductivity.
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Dissipation effects

In simple terms:

πyx = 2 η ∂⟨yux⟩

Π = −ζ ∂ ·u

nx = κ ∂⟨x⟩a

Shear viscosity: resistance to shape change.

Bulk viscosity: resistance to volume change.

Charge/heat conductivity: fluid’s
resistance to flow of charge/heat.
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QGP shear viscosity

ηqgp > ηpitch

(η/s)qgp <
3

4π
Specific shear viscosity is the relevant quantity for dynamics.
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η/s of various fluids

[Lacey et. al., Phys. Rev. Lett. 98, 092301 (2007)]
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Acausality problem [P. Romatschke, Int. J. Mod. Phys. E 19, 1 (2010)]

Consider small perturbations of energy density and fluid velocity,

ϵ = ϵ0 + δϵ(t, x), uµ = (1, 0) + δuµ(t, x).

For a particular direction y, we get a diffusion-type equation

∂tδu
y − η0

ϵ0 + P0
∂2
xδu

y = O(δ2).

Use mixed Laplace-Fourier wave ansatz to study the individual
modes

δuy(t, x) = exp(−ωt+ ikx)fω,k.

We obtain the “dispersion-relation” for the diffusion equation

ω =
η0

ϵ0 + P0
k2.

The speed of diffusion of a mode with wavenumber k

vT (k) =
dω

dk
= 2

η0
ϵ0 + P0

k.

Increases ∝ k without bound: acausal behavior.
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Intuitive solution

One possible way out is the “Maxwell-Cattaneo” law,

τππ̇
⟨µν⟩ + πµν = 2η∇⟨µuν⟩.

The diffusion equation becomes a relaxation-type equation.

A new transport coefficient: the relaxation time τπ.

The effect of this modification on the dispersion relation for the
perturbation δuy becomes,

ω =
η0

ϵ0 + P0

k2

1− ωτπ
.

The above equation describes propagating waves with a maximum
propagation speed

vmax
T ≡ lim

k→∞

d|ω|
dk

=

…
η0

(ϵ0 + P0)τπ
.

Interestingly, for all known fluids the limiting value of vmax
T < 1.
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Muller-Israel-Stewart theory from entropy current

While Maxwell-Cattaneo law is successful in solving the acausality
problem, it does not follow from a first-principles framework.

Desirable to derive some variant of Maxwell-Cattaneo law which
preserves causality: Muller-Israel-Stewart (MIS) theory.

Assuming entropy current to be algebraic in the hydrodynamic
degrees of freedom,

Sµ = suµ − β2
2T

παβπ
αβuµ +O(π3).

Demanding second law of thermodynamics, ∂µS
µ ≥ 0,

τππ̇
⟨µν⟩ + πµν = 2η∇⟨µuν⟩ − 4

3
τπθπ

µν .

The relaxation time can be related as: τπ = 2ηβ2.

One more transport coefficient: β2 or equivalently τπ.
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Other aspects and references

Several other aspects pertaining to regime of applicability of
hydrodynamics:

Re-summation of the asymptotic gradient expansion.

Emergent dynamical attractors and resurgence.

Power law behavior of solutions at early times.

An extensive review on “New theories of relativistic
hydrodynamics in the LHC era”: [W. Florkowski, M. Heller, M. Spalinski,

Rept.Prog.Phys. 81 (2018) 4, 046001, arXiv:1707.02282]

For basic theoretical framework of relativistic hydrodynamics: [AJ

and V. Roy, Adv.High Energy Phys. 2016 (2016) 9623034, arXiv:1605.08694]

Also recommended is a recent book by Romatschke: “Relativistic
Fluid Dynamics In and Out of Equilibrium” [P. Romatschke and

U. Romatschke, arXiv:1712.05815]
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First-order causal hydrodynamics [P. Kovtun BIRS workshop seminar]

In general, out of equilibrium, the notions of “local rest frame”,
“local densities” etc are ambiguous, and are a matter of pure
convention/taste.

Identify the low-energy variables: T, µ, uµ.

Write down all possible terms in the constitutive relations
consistent with the symmetry.

Do this up to a given order (say, first order) in the derivative
expansion.

Do not use identities between different derivatives from
lower-order equation of motion: exact first-order theory.

Constrain the coefficients so that the physics is sensible, e.g.
demand stability of equilibrium, stability of perturbation and
causality.

[Kovtun, JHEP 10 (2019) 034; Bemfica, Disconzi, Noronha, Phys.Rev.D 100 (2019) 104020]
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Angular momentum and Magnetic field

Angular momentum and magnetic field generated in the fireball.

Magneto-hydro formulation with angular momentum conservation

Current state-of-the-art: both effects are treated separately.

Possible unified formulation in future.
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Angular momentum conservation: particles

Orbital angular momentum of a particle with momentum p⃗:

L⃗ = x⃗× p⃗ ⇒ Li = εijk xi pj

One can obtain the dual tensor:

Lij ≡ εijk Lk ⇒ Lij = xi pj − xj pi

We know that both definitions are equivalent.

In absence of external torque,
dL⃗

dt
= 0 and ∂iLij = 0.

This treatment valid for non-relativistic point particles.

For fluids, particle momenta → “generalized fluid momenta”

The energy-momentum tensor

Amaresh Jaiswal (NISER) ICPAQGP Student Day 25



Angular momentum conservation: fluid

The orbital angular momentum for relativistic fluids is defined as

Lλ,µν = xµT λν − xνT λµ

Keeping in mind the energy-momentum conservation, ∂µT
µν = 0:

∂λL
λ,µν = Tµν − T νµ

Obviously, for symmetric Tµν , orbital angular momentum is
automatically conserved. Classically Tµν always symmetric.

For medium constituent with intrinsic spin, different story

Jλ,µν = Lλ,µν + Sλ,µν

Ensure total angular momentum conservation: ∂λJ
λ,µν = 0.

In absence of coupling terms, ∂λS
λ,µν = 0 (Spin Hydrodynamics).
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Pseudo-gauge transformations

Recall that the total angular momentum is given by,

Jλ,µν = Lλ,µν + Sλ,µν

With ∂µT
µν = 0, and ∂λL

λ,µν = Tµν − T νµ,

∂λJ
λ,µν = 0 =⇒ ∂λS

λ,µν = T νµ − Tµν

Hence the final hydrodynamic equations can be written as

∂µT
µν = 0, ∂λS

λ,µν = T νµ − Tµν

Also holds with the following redefinition

T̃µν = Tµν +
1

2
∂λ
Ä
Φλ,µν − Φµ,λν − Φν,λµ

ä
S̃λ,µν = Sλ,µν − Φλ,µν

Freedom due to space-time symmetry; including torsion fixes this.
[Gallegos et. al., SciPost Phys. 11, 041 (2021); Hongo et. al., JHEP 11 (2021) 150]
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Theoretical development in spin-hydrodynamics

Within kinetic theory [Florkowski et. al., PRC 97, 041901 (2018); PRD 97,

116017 (2018); Bhadury et. al. PLB 814, 136096 (2021); PRD 103, 014030 (2021)].

Other parallel approaches from Wigner function [N. Weickgenannt,

X.-l. Sheng, E. Speranza, Q. Wang and D. Rischke, PRD 100 (2019) 056018].

Appraoch based on chiral kinetic theory [S. Shi, C. Gale and S. Jeon,

PRC 103 (2021) 044906].

Appraoch based on Lagrangian method [D. Montenegro and G. Torrieri,

PRD 100 (2019) 056011].

Formulation with torsion in metric [A. D. Gallegos, U. Gürsoy and

A. Yarom, SciPost Phys. 11, 041 (2021); M. Hongo, X.-G. Huang, M. Kaminski,

M. Stephanov, H.-U. Yee, JHEP 11 (2021) 150].

Useful reviews on spin hydro: [W. Florkowski, R. Ryblewski and A. Kumar,

Prog.Part.Nucl.Phys. 108 (2019) 103709; S. Bhadury, J. Bhatt, A. Jaiswal and

A. Kumar, Eur.Phys.J.ST 230 (2021) 3, 655-672].

Much work needed in this direction.
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Electromagnetic field and fluid

Let’s consider non-polarizable, non-magnetizable fluid.

The equations of motion of magento-hydrodynamics in absence of
external charge current:

∂µT
µν = 0, ∂µJ

µ = 0

Total energy momentum tensor and electric charge current

Tµν = Tµν
f + Tµν

em , Jµ = qNµ
f

The energy momentum of fluid not separately conserved

∂µT
µν
f = F νλJλ ⇒ ∂µT

µν
em = −∂µT

µν
f = −F νλJλ

Energy momentum of field changes because field performs work on
charged particles within the fluid.
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Magnetohydrodynamics: non-resistive & non-dissipative

The charge four-current induced by magnetic field is:

Jµ
ind = σE Eµ

For non-resistive, electrical conductivity σE → ∞.

For induced current to remain finite, Eµ → 0.

In this limit, Faraday tensor and its dual becomes

Fµν → Bµν = ϵµναβuαBβ, F̃µν → B̃µν = Bµuν −Bνuµ

Maxwell’s equations reduce to:

ϵµναβ(uα ∂µBβ +Bβ ∂µuα) = Jµ, Ḃµ +Bµθ = uµ ∂νB
ν +Bν∇νu

µ

Field energy-momentum tensor becomes

Tµν
em → Tµν

B =
B2

2
(uµuν −∆µν − 2 bµ bν)

Where B2 ≡ −BµBµ and bµ ≡ Bµ/B.
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Magnetohydrodynamics in heavy-ion collisions

Total energy momentum tensor of non-resistive non-dissipative
fluids [V. Roy, S. Pu, L. Rezzola and D. Rischke, PLB 750 (2015) 45-52]:

Tµν =

Å
ϵ+

B2

2

ã
uµuν −

Å
P +

B2

2

ã
∆µν −B2 bµ bν

In this case, energy momentum tensor of fluid and magnetic field
are separately conserved [Denicol et. al. PRD 98 (2018) 076009].

Resistive dissipative formulation has also been attempted [Denicol et.

al. PRD 99 (2019) 056017]

Several groups actively working on MHD and effect of magnetic
field.

There are some theoretical support from astrophysics literature.

More phenomenological work required within this framework.
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Relativistic hydrodynamics: fast developing field.

Active involvement of bright young minds needed!
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