

JOINT INSTITUTE FOR NUCLEAR RESEARCH

Prospects for Dilepton Measurements in MPD at NICA

Sudhir Pandurang Rode for the MPD collaboration

DAE-BRNS Symposium on CETHENP 2022

- Motivation
- MPD apparatus
- Di-electrons and challenges
 - Conversion rejection
 - $\,\,$ $\,$ Rejection of di-electrons from π^0 Dalitz decays
- Conclusions

Motivation

> Explore high μ_B matter.

۶

- > Search for Critical end point and 1st order phase transition.
- > $\sqrt{s_{_{NN}}}$: 4-11 GeV → Designed luminosity: 10²⁷ cm⁻² s⁻¹
- Experiments@NICA: MPD, SPD and BM@N.
- BM@N taking data since 2018.
 - Multi Purpose Detector (MPD) experiment: Rich and exciting di-electron program.

Motivation

- ➢ Intermediate Mass Region: Excitation function of the inverse-slope parameter, T_s (M = 1.5 − 2.5 GeV).
- Closely related to the initial temperature T_i of the fire ball: "thermometer" for the heavy-ion collisions.
- Low Mass Region: At SPS and RHIC, the excess in dilepton yields: broadening of the *ρ* meson spectral function -> restoration of chiral symmetry.
- Sum of QGP and hadronic contributions proportional to fireball lifetime: "chronometer" for heavy-ion collisions

- Stage 1: TPC, TOF, ECAL, FHCal, FFD
- Stage 2: + ITS + EndCaps.
- Stage 1: Commissioning is expected at the end of 2023.
- > Nominal magnetic field, B = 0.5 T.
- First data taking is expected in 2024 with Bi-Bi beam at $\sqrt{s_{NN}} = 9.2$ GeV.

SC Coil

Cryostat

Time Projection Chamber (TPC)

Read-out chambers (ROC): MWPC.

- 12 ROCs per end-cap: 53 pad rows per ROC.
- Sas mixture of 90% Ar+10% CH_4
- Maximum design event rate for the TPC: 7 kHz.
- The TPC vessel and ROCs are done: Electronics in mass production.

Length	340 cm	
Vessel outer radius	140 cm	
Vessel inner radius	27 cm	
Drift vol. outer radius	$133 \mathrm{~cm}$	
Drift vol. inner radius	34 cm	
Drift vol. length	163 cm (of each half)	
HV electrode type	Central membrane	
Electric field strength	$\sim 140~{ m V/cm}$	
Default magnetic field	0.5 T	
Drift gas mixture	$90\% { m Ar}{+}10\% { m CH}_4$	
Pressure	Atm. pressure $+2$ mbar	
Gas amplification factor	$\sim 10^4$	
Drift velocity	$5.45 \text{ cm}/\mu\text{s}$	
Drift time	$< 30 \ \mu s$	
Temperature stability	< 0.5 °C	
Readout chambers	24 (12 per end-plate)	
Segmentation in ϕ	30°	
Inner pad size	$5 \mathrm{x} 12 \mathrm{mm}^2$	
Outer pad size	$5 \text{x} 18 \text{ mm}^2$	
Total number of pads	95232	
Pad row count	53	
Maximum event rate	7 kHz ($L = 10^{27} \text{ cm}^{-2} \text{s}^{-1}$)	
Electronics shaping time	\sim 180-190 ns	
Signal-to-noise ratio	30:1	
Signal dynamical range	10 bits	
Sampling rate	10 MHz	
Sampling depth	310 time buckets	
Two-track resolution	$\sim 1 \text{ cm}$	

Time Projection Chamber (TPC)

- 3D tracking + dE/dx measurement.
- The achieved accuracy of the energy loss <dE/dx> is 6-7%.
- ➤ Discrimination of charged pions from kaons up to momenta of ≈ 0.7 GeV/c and kaons from protons up to ≈ 1.1 GeV/c.

Time-Of-Flight (TOF)

- Measures time-of-flight of the track.
- MRPCs ready: testing in spring 2023.
- Designed Time and coordinate resolution of ≈50 ps and ≈0.5 cm, respectively.

- Better PID perfomance is achieved when combined with TPC.
- TOF matching efficiency: about 90% and it drops below 80% for track momenta below 250 MeV/c.
- Correct identification of protons and $\pi^{+/-}$ (K) with 90% (80%) upto p $\approx 2.5 (1.7)$ GeV/c.

E_v (GeV)

SE/E 48 modules/half-sector \rightarrow 50 half-sectors 0.18 1600/2400 modules: Done (66%). 0.16 Au-Au@11 GeV 0.14 0.12 0.1 0.08 0.06 0.04 0.02 |η| < 1.4 0.2 0.4 0.6 0.8 1 12 14 16 18

- A shashlik type calorimeter made of Pbscintillator sandwiches.
- Full configuration: 50 half-sectors in full azimuth (25 full sectors): Range, 360°/25 = 14.4°
- Measures deposited energy of the track and detect particles of energy from 10 MeV to a few GeV.
- Energy resolution is $\sim 5\%$ at 1 GeV.

 $2 < |\eta| < 5$

- FHCal: Event centrality, reaction plane measurements and event triggering.
- Two identical detectors, each with 44 modules placed approx. 3.2 m upstream and downstream from the center of the detector.
- The module transverse size of 15 x 15 cm².
- Modules and FEE boards are produced and tested.
- ▶ Relative calorimeter energy resolution, $\sigma_E / E \approx 55\% / \sqrt{E}$ (GeV).10

Fast Forward Detector (FFD)

- FFD: Provides fast triggering of A+A collisions and generates the start-time (T0) pulse for the ToF detector with a time resolution better than 50 ps.
- Consists of 20 Cherenkov modules with each module consists of a 10 mm lead converter, a 15 mm quartz radiator.
- Almost 100% L0 trigger efficiency for central to mid-central collisions.

- Vertex is reconstructed using TPC reconstructed tracks.
- Uncertainty of the longitudinal position of the reconstructed primary vertex increased by factor 2-3 for low track multiplicity events.
- Transverse and longitudinal position uncertainties for TPC reconstructed primary tracks increases at low $p_{\rm T}$.

Maximum achievable relative transverse momentum resolution for charged particles of ~ 2% as function of $p_{\rm T}$ (0.2-0.8 GeV/c) and η ($|\eta| < 1$).

Particle Identification with MPD

- For PID, TPC (dEdx information), TOF (Time-Of-Flight) and ECal (E/p) is used.
- TPC+TOF is good enough to identify electrons with decent purity.
- However, ECal helps to gain even higher purity.

- ► Typical cuts on electrons:
 - ' |η| < 1.</p>
 - > DCA < 3σ .
 - $p_{\rm T} > 50 \; {\rm MeV/c}$
 - > at least 39 hits in TPC
 - 2σ electron PID in TPC/TOF

- Single electron reconstruction efficiency: about 40% using TPC-TOF-ECal eID above 250 MeV/c.
- Purity of 70-90% at high p_T using TPC-TOF for eID and almost 100% using additional information from ECal.

- TPC and TOF PID is sufficient to get decent purity however, high pt and high invariant mass region is still contaminated.
- Nevertheless, additional information from ECal helps removing the contamination.

Possible main sources of dielectrons

i	Dilepton channels	
1	Dalitz decay of π^0 :	$\pi^0 \rightarrow \gamma e^+ e^-$
2	Dalitz decay of η :	$\eta ightarrow \gamma l^+ l^-$
3	Dalitz decay of ω :	$\omega \to \pi^0 l^+ l^-$
4	Dalitz decay of Δ :	$\Delta \to N l^+ l^-$
5	Direct decay of ω :	$\omega \to l^+ l^-$
6	Direct decay of ρ :	$ ho ightarrow l^+ l^-$
7	Direct decay of ϕ :	$\phi \to l^+ l^-$
8	Direct decay of J/Ψ :	$J/\Psi ightarrow l^+ l^-$
9	Direct decay of Ψ' :	$\Psi' \to l^+ l^-$
10	Dalitz decay of η' :	$\eta' \to \gamma l^+ l^-$
11	pn bremsstrahlung:	$pn \rightarrow pnl^+l^-$
12	$\pi^{\pm}N$ bremsstrahlung:	$\pi^\pm N \to \pi N l^+ l^-$

- Dalitz decays are major source of background.
- Major challenge is to reduce the combinatorials, and improve S/B.
- UrQMD and PHSD are employed for the simulations: Results with PLUTO are being studied.

- Optimization of track and eID selection cuts:
 - more differential DCA parameterizations
 - better control over the track-to-TOF matching
 - better treatment of eID in the TPC, TOF and ECAL
- Special efforts are in progress to reduce the CB from γ conversions and π^0 - η Dalitz decays.
 - rejection of conversions: DCA cut
 - rejection of Dalitz decay track candidates:
 - > Tracks belonging to fully reconstructed π^0 Dalitz are tagged and not used for further pairing.
 - Divide the acceptance into the fiducial and veto area for better recognition of Dalitz pairs.
- Criteria:
 - \blacktriangleright larger statistical significance of signals \rightarrow smaller statistical uncertainties
 - higher S/B ratio \rightarrow smaller systematic uncertainties from background normalization.
- Signals:
 - ► Low Mass region \rightarrow 0.2-0.6 GeV/c²
 - LVM: φ, ρ, ω.

Rejection of single conversion electron

- DCA selection of 2 or 3σ is very effective in reducing contributions from single conversion track in TPC vessels.
- Not so much at the beam pipe: source of combinatorials.

Similarly, it is very effective in reducing contributions from conversion pairs in TPC vessels.

Not so much at the beam pipe: source of combinatorials.

FOR NUCLEAR RESEARCH

- Perform analysis in fiducial acceptance (say $|\eta| < 0.3$) and other is veto (0.3 < η < 1.0).
- With different analysis strategies, further rejection of combinatorials can be achieved.
- ▶ Better reconstruction of low p_{T} tracks → already 30% reduction in CB with tuned selection.
- Test reduced magnetic field (B = 0.2 T) sample.

21

- Optimization of selection cuts could lead to some improvements.
- Signal to Background ratio of 5-10% between 0.2 to 1.5 GeV/c² invariant mass region.
- Meaningful measurements at ~100M events → First observations possible at ~ 50 M events
- Dedicated mass productions for di-electron analyses.
- Continuous dedicated efforts are being put to improve S/B ratio while preserving signal significance.

- MPD is under construction at NICA \rightarrow Commissioning is expected at the end of 2023 \rightarrow First data taking is expected in 2024 with <u>BiBi@9.2</u> GeV.
- Dielectrons are valuable probes and capable of delivering strong physics messages: Exciting di-electron program is anticipated at MPD using dedicated sub-detectors.
- Excellent PID and high purity can be achieved using ECal in addition to TPC+TOF.
- Various event generators are being utilized to simulate event with di-electrons sources.
- Good control over CB from conversions using DCA selection except at beam pipe: ongoing efforts to reduce combinatorial background from Dalitz decays.

Thank you 🦿

BACK-UP

- 4π configuration.
- TPC, TOF, ECAL, FHCal, FFD, ITS and EndCaps.
- To be constructed in two stages.

Motivation

Phys. Lett. B 753, 586 (2016)

- ▶ Intermediate Mass Region: Excitation function of the inverse-slope parameter, T_s (M = 1.5 2.5 GeV).
- Closely related to the initial temperature T_i of the fire ball: "thermometer" for the heavy-ion collisions.
- Low Mass Region: At SPS and RHIC, the excess in dilepton yields: broadening of the *ρ* meson spectral function -> restoration of chiral symmetry.
- Sum of QGP and hadronic contributions proportional to fireball lifetime: "<u>chronometer</u>" for heavy-ion collisions

Multi-Purpose Detector (MPD) Collaboration

MPD International Collaboration was established in 2018 to construct, commission and operate the detector

10 Countries. >450 participants. 31 Institutes and JINR

Organization

Acting Spokesperson: Deputy Spokesperson: Institutional Board Chair: Project Manager: Joint Institute for Nuclear Research: AANL, Yerevan, Armenia; University of Plovdiv, Bulgaria; Tsinghua University, Beijing, China; USTC. Hefei. China: Huzhou University, Huizhou, China; Institute of Nuclear and Applied Physics, CAS, Shanghai, China; Central China Normal University, China; Shandong University, Shandong, China; IHEP, Beijing, China; University of South China, China; Three Gorges University, China; Institute of Modern Physics of CAS, Lanzhou, China: Tbilisi State University, Tbilisi, Georgia; FCFM-BUAP (Heber Zepeda) Puebla, Mexico; FC-UCOL (Maria Elena Tejeda), Colima, Mexico; FCFM-UAS (Isabel Dominguez), Culiacán, Mexico; ICN-UNAM (Alejandro Ayala), Mexico City, Mexico; Institute of Applied Physics, Chisinev, Moldova; Institute of Physics and Technology, Mongolia;

Victor Riabov Zebo Tang Alejandro Ayala Slava Golovatyuk

Belgorod National Research University. Russia: INR RAS, Moscow, Russia; MEPhI, Moscow, Russia; Moscow Institute of Science and Technology, Russia; North Osetian State University. Russia: NRC Kurchatov Institute, ITEP, Russia; Kurchatov Institute, Moscow, Russia; St. Petersburg State University, Russia; SINP. Moscow. Russia: PNPI. Gatchina. Russia: Vinča Institute of Nuclear Sciences, Serbia; Pavol Jozef Šafárik University, Košice, Slovakia

- Many ongoing programs and future experiments in comparable energy ranges.
- Physical program of the MPD should be considered in close cooperation with <u>BM@N</u>.
- Continuously developing MPD physical program based on recent advancements in the field.
- Close cooperation with theoreticians to look for new signals/observables unique for the MPD.

MPD Front Cross-section

32

MPD Cross-section

TPC Cross-section

TPC Cross-section

Selected tracks 1. hits > 39 2. $|\eta| < 1$ 3. $|DCA_x,y,z| < 3$ 4. 2σ matching to TOF

