Recent results on bottomonium production

Subikash Choudhury Saha Institute of Nuclear Physics

Evolution of a heavy ion collision

What are Quarkonia?

- Bound states of heavy flavor quark-antiquark pairs; charmonium ($c\bar{c}$) and bottomonium (bb)
- Produced very early in collisions from initial hard scattering

Why important ?

- Benchamark for non-perturbative and perturbative aspects of QCD
- Sensitive to partonic deconfinement

Why Quarkonia/Bottomonia ?

arXiv:2211.04384

Information on thermalization – picks up flow (v_2) ?

Why Quarkonia/Bottomonia ?

arXiv:2211.04384

6

Signal Extraction

CMS-HIN-21-007-pas.pdf

pp 300 pb⁻¹ (5.02 TeV) <u>×10³</u> PbPb 1.6 nb⁻¹ (5.02 TeV 200F 9000 CMS CMS $p_T^{\mu^*\mu^- < 30 \text{ GeV/c}}$ Preliminary 180[Preliminary 8000 Events / (0.075 GeV/c²) (0.075 GeV/c²) < 30 GeV/c $|v^{\mu^+\mu^-}| < 2.4$ 160F $|v^{\mu^*\mu^*}| < 2.4$ 7000 p_ > 3.5 GeV/c $p_{-}^{\mu} > 3.5 \text{ GeV/c}$ Data 140E • Data 6000E $|\eta^{\mu}| < 2.4$ $|\eta^{\mu}| < 2.4$ — Total fit 120E — Total fit Centrality 0-90% 5000È ---- Signal 100[---- Signal 4000 Background Background **80**F Events 3000 60F 2000È 40 1000Ē 20 9 12 13 13 14 8 9 12 14 11 10 11 $m_{\mu^+\mu^-}$ (GeV/c²) $m_{\mu^+\mu^-}$ (GeV/c²)

 1^{st} observation of $\Upsilon(3S)$ in PbPb

Selection: $\Upsilon(nS) \rightarrow \mu^+ \mu^-$ In detector acceptance

Signal : **Crystal Ball**

Background: 2nd order polynomial/ **Double Exponential**

2205.03042

2205.03042

$$R_{\rm AA} = \frac{N_{\rm AA}}{\langle T_{\rm AA} \rangle \times \sigma^{pp}}$$

 $R_{AA} = 1$: AA equivalent to pp $R_{AA} < 1$: signature of QGP

Ordering in R_{AA} : $\Upsilon(1S) > \Upsilon(2S) > \Upsilon(2S+3S)$

No strong $p_{_{\rm T}}$ dependence

Evidence of sequential melting

Clear evidence of sequential melting

From RHIC (200 GeV) to LHC (5020 GeV)

CMS-HIN-21-007-pas.pdf 2207.06568 2205.03042

Clear indication sequential melting both at RHIC and LHC

Ordering in R_{AA} : $\Upsilon(1S) > \Upsilon(2S) > \Upsilon(2S+3S / 3S)$

From RHIC (200 GeV) to LHC (5020 GeV)

CMS-HIN-21-007-pas.pdf 2207.06568 2205.03042

Clear indication sequential melting both at RHIC and LHC

alculation simultaneo

Important to note:

- $-\Upsilon(1S)$ has same order of suppression both at RHIC & LHC
- $\Upsilon(2S)$ is more suppressed at LHC than RHIC

Model calculation simultaneously explains RHIC at LHC data with: medium temperature – 455 MeV at RHIC

- 630 MeV at LHC

Model predictions

Models use different approaches but agrees well with data

Key ingradient in all models is deconfinement

LHC data suggests strong BE of $\Upsilon(1S)$ that can survive upto $T_{avg} \sim 500 \text{ MeV}$

 $\Upsilon(2S)$ melts at ~ 250 MeV

From mid rapidity to forward rapidity

- Sequential suppression both at mid and forward rapidity
- No rapidity dependence
- Model calculations suggest regenaration effect is insignificant

CMS-HIN-21-007-pas.pdf

Collective flow

 $\Upsilon(1S) v_2$ consistent with zero, model calculations predict very small value – Leaves the medium very early

Simultaneous description of $R_{AA} & v_2$ can constrain model parameters better

- $-R_{pPb} > R_{AA}$
- $-R_{pPb}$ exhibit ordering same as R_{AA}
- Presence of final state interactions, consistent with "co-mover" scenario

- $-\Upsilon(1S)$ order of suppression is same at mid and forward rapidity
- Pb going direction shows more suppression
- Agrees with "co-mover" scenario

Collective flow

 $\Upsilon(1S) v_2$ is consistent with zero both in AA and pA collisions

$\Upsilon(nS)/\Upsilon(1S)$ with Event Activity (EA)

EA is the measure of number particles produced in an event

 $\Upsilon(nS)/\Upsilon(1S)$ vs EA is analogous to R_{AA} or R_{pA}

CMS results at mid-rapidity and high multiplicity shows a suppression – Hint of final state interaction?

No EA dependence at forward y - Consistent with PYTHIA

- Comover model underestimates

$\Upsilon(nS) < p_T > vs EA$

 $- \langle p_T \rangle$ of $\Upsilon(3S) > \Upsilon(2S) > \Upsilon(1S)$

– Is the reason same as it is for π ,K & p? Mass ordering due to radial flow-like effect

What can be other explainations ? – Can co-movers explain ?

JHEP 11 (2020) 011

$\Upsilon(nS) < p_T > vs EA$

JHEP 11 (2020) 011

Test of co-mover idea

 $\Upsilon(nS) / \Upsilon(1S)$ vs N_{track} calculated for # of tracks in a cone around $\Upsilon(nS)$

- In co-mover scenario ratio should depend N_{track} around $\Upsilon(nS)$
- Results is contrary to the expectation
- Some thing more is happening

A novel and unconventional measurement from ATLAS ATLAS ATLAS-CONF-2022-023.pdf

ATLAS measured $< n_{ch} >$ for different $\Upsilon(nS)$:

 $- < n_{ch} >$ is different for different $\Upsilon(nS)$ states

– Event with $\Upsilon(2S)$ has ~3 tracks less than events that has $\Upsilon(1S)$

– Event with $\Upsilon(3S)$ has ~5 tracks less than events that has $\Upsilon(1S)$

– More dominant at low- p_T

– No such effect in PYTHIA

Trivial interpretation: Energy penalty is more producing massive particle

A novel and unconventional measurement from ATLAS-CONF-2022-023.pdf

Excess in $< n_{ch} >$ is not only around $\Upsilon(1S)$ direction

It is spread over entrire $\Delta \varphi$

Something interesting must be happening

Summary

Sequential (like) suppression observed in AA (pA) collisions both at RHIC and LHC Medium effect in AA, most likely effect of dynamic dissociation v_2 of Y(1S) consistent with zero