Heavy quark diffusion in the hot QCD matter

Santosh Kumar Das

School of Physical Science Indian Institute of Technology Goa Goa, India

Introduction

Heavy transport coefficients in QGP

Heavy quark thermalization

□ Impact of electromagnetic field

□ Impact of pre-equilibrium phase

□ Summary and outlook

Heavy Quark & QGP

SPS to LHC

 $\sqrt{s} = 17.3 GeV$ to $2.76 TeV \sim 100$ times

 $T_i = 200 \ MeV \ to \ 600 \ MeV \$ ~3 times

 $\tau_{c,b} >> \tau_{QGP}$ $M_{c,b} >> T_0$

Produced by pQCD process (before equilibrium) (Early production)

They go through all the QGP life time

No thermal production

Heavy quark physics at different scales

Studying the HF dynamics in HIC

R_{AA} and v_2 Comparison with models

ALICE, JHEP 01 (2022) 174

Most of the models able to describe both R_{AA} and v_2 in certain p_T domain

Simultaneous description of R_{AA} and v_2 is still a challenge in the whole measured p_T and centrality ranges

Impact of T dep. interaction on $R_{AA} - v_2$

Summary on the build-up of v_2 at fixed R_{AA}

 R_{AA} and V_2 are correlated but still one can have R_{AA} about the same while V_2 can change up to a factor 2-3 $\gamma(T)$ + Boltzmann dynamics+ hadronization+ hadronic phase

New observables:

 $V_n(D)$ more correlated to $v_n(N_{ch})$ than ϵ_n

Very large sensitivity to T dep. of Ds

This can put further constrain on heavy quark transport coefficients

Plumari, Coci, Minissale, Das, Sun, Greco PLB 805 (2020) 135460

A systematic attempts are going on within the EMMI-RRTF and "JET-HQ" working groups to find a common agreement between different groups:

0.3

0.0

 $p_{T}(\tilde{G}eV)$

S. Cao et. al PRC 99, 054907 (2019) (JET-HQ)

p (GeV)

Heavy quark thermalization

He, Fries, Rapp, PRL,110, 112301 (2013)

Heavy quark thermalization

$$\tau_{\rm th} = \frac{M}{2\pi T^2} (2\pi T D_s) \cong 1.8 \, \frac{2\pi T D_s}{(T/T_c)^2} \, \, {\rm fm/c}$$

 $2\pi T D_s \propto T^2$, corresponds to a constant thermalization time.

Scardina, Das, Minissale, Plumari, Greco PRC,96, 044905 (2017)

Impact of EM field on heavy quark dynamics at LHC

$$dp_{j} = -\Gamma p_{j}dt + \sqrt{dt}C_{jk}(t, p + \xi dp)\rho_{k} + F_{ext}dt$$

$$F_{ext} = q(E' + v \times B')$$

$$E' = \gamma (E + v \times B) - (\gamma - 1) (E \cdot \hat{v})\hat{v}$$

$$B' = \gamma (B - v \times E) - (\gamma - 1) (B \cdot \hat{v})\hat{v}$$

Electromagnetic field has been included in the Langevin equation as a external force.

We consider both E and B.

$$v_1 = <\frac{p_x}{p_T} >$$

Das, Plumari, Chartarjee, Scardina, Greco, Alam Phys. Lett. B, 768 (2017) 260

Heavy quark v1@LHC

Das, Plumari, Chartarjee, Scardina, Greco, Alam Phys. Lett. B, 768 (2017) 260

Heavy quark v1@RHIC and LHC

Heavy quark dynamics in presence of EM field at RHIC within PHSD

$$p^{\mu}\left(\frac{\partial}{\partial x^{\mu}} - F_{\mu\nu}\frac{\partial}{\partial p^{\nu}}\right)f = C[f]$$

Voronyuk, Toneev, Cassing, Bratkovskaya Konchakovski, Voloshin, PRC, 83, 054911, 2022

The splitting is larger as a function of momentum

Das, Soloveva, Song, Bratkovskaya Under preparation

D meson elliptic flow in presence of electromagnetic flow at RHIC

Das, Soloveva, Song, Bratkovskaya Under preparation

Heavy quark in small system (p-nucleus)

ALICE Collaboration Phys. Rev. Lett. 113 (2014) 232301

CMS Collaboration arXiv:1804.09767v2

What mechanism could build up v_2 without energy loss?

Heavy quarks as probes of the evolving Glasma

(Adapted from M. Ruggieri) Hamilton equations of motion of *c*-quarks:

$$t_{\rm formation} \approx \frac{1}{2m_c} \approx 0.06 \; {\rm fm/c}$$

HQs can probe the very early evolution of the Glasma fields

$$\begin{split} \frac{dx_i}{dt} &= \frac{p_i}{E} & E = \sqrt{p^2 + m^2} & v \equiv \frac{p}{E} \quad (\text{Relativistic}) \text{ Velocity} \\ E \frac{dp_i}{dt} &= gQ_a F^a_{i\nu} p^{\nu}, & \frac{dp}{dt} = qE + q (v \times B) \quad \text{Lorentz force} \\ E \frac{dQ_a}{dt} &= -gQ_c \varepsilon^{cba} A_b \cdot p_{\text{Wong (1979)}} & D_{\mu} J^{\mu}_a = 0 & \text{Gauge-invariant conservation of the color} \\ J^{\mu}_a &= \bar{c} \gamma^{\mu} T_a c \end{split}$$

Equations of motion of heavy quarks are solved in the background given by the evolving Glasma fields

p-Pb @ 5.02 TeV Nuclear modification factor (R_{pPb}) for p-Pb collisions

Impact of memory on heavy quark thermalization

$$\sigma_p = \frac{1}{2} \langle (p_x(t) - p_{0x})^2 + (p_y(t) - p_{0y})^2 \rangle$$

Liu, Das, Greco, Ruggieri, PRD 103, 034029 (2021)

Impact of Glasma on a heavy quark observables at LHC (Glasma vs Plasma)

Glasma induce a diffusion of charm quarks in momentum space resulting in a tilt of their spectrum without a significant drag.

Sun, Coci, Das, Plumari, Ruggieri, Greco PLB, 798 (2019) 134933

Impact of Glasma on a heavy quark observables at LHC (Heavy quark dynamics in Glasma plus Plasma)

This indicates an initial pre-thermal stage is unlikely to be described in terms of a standard drag and diffusion dynamics, because even if one tune such coefficients to reproduce the same RAA(pT) this would imply a significantly smaller v₂.

Sun, Coci, Das, Plumari, Ruggieri, Greco PLB, 798 (2019) 134933

Conclusions and Perspectives:

***** Present calculations indicate $\tau_{th} \sim 2-6$ fm/c for low p_T charm quark.

 Heavy-light event-by-event correlation can further constrain the heavy quark transport coefficients

- Heavy quark directed flow as a function of pT is sensitive to EMF
- * Impact of EMF on heavy quark elliptic flow is negligible
- ***** Heavy quark diffusion in pre-equilibrium phase is crucial.

Impact of memory on heavy quark thermalization

$$\sigma_p = \frac{1}{2} \langle (p_x(t) - p_{0x})^2 + (p_y(t) - p_{0y})^2 \rangle \qquad \qquad \sigma_p = \langle (p_T - \langle p_T \rangle)^2 \rangle$$

Memory delay the thermalization time

Liu, Das, Greco, Ruggieri, PRD 103, 034029 (2021) Ruggieri, Pooja, Jai Prakash, Das, arxiv: 2203.06712 [hep-ph]