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▶ Clustering refers to a phenomenon where nuclei (with A = 4N such as
Be, C, O etc.) behave like a molecule composed of α-clusters.

▶ In the context of nucleosynthesis, both theoretical and experimental
understandings of such states are important.

▶ However, theory as well as experiment both still lack direct proof in
support of α-clustering.

A recent study[1] based on quantum many-body simulation from first
principle has shown how such α-clustreing can appear in 8Be and 12C.

[1] T. Otsuka et. al., Nat Commun 13, 2234 (2022)
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▶ “Signatures of alpha clustering in light nuclei from relativistic nuclear collisions”- Wojciech Broniowski and
Enrique Ruiz Arriola, Phys.Rev.Lett. 112, 112501(2014).

▶ “α clusters and collective flow in ultrarelativistic carbon–heavy-nucleus collisions”- P. Bozek et. al.,
Phys.Rev.C 90 6, 064902 (2014).

▶ “Nuclear cluster structure effect on elliptic and triangular flows in heavy-ion collisions”- S. Zhang et.
al.,Phys. Rev. C 95, 064904 (2017).

▶ “Signatures of α-clustering in ultra-relativistic collisions with light nuclei”- Maciej Rybczyński et. al., Phys.
Rev. C 97, 034912 (2018).

▶ “Collective flows of α-clustering 12C + 197Au by using different flow analysis methods”- S. Zhang et. al.,
Eur. Phys. J. A 54, 161 (2018).

▶ “Machine-learning-based identification for initial clustering structure in relativistic heavy-ion collisions”-
Junjie He et. al., Phys. Rev. C 104, 044902 (2021).
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https://u.osu.edu/vishnu/2015/07/22/photon-
emission-from-relativistic- heavy-ion-
collisions/ , Credit: Chun Shen

Direct photons = Inclusive photons−Decay photons

▶ Thermal (using hydrodynamical description)
+ Prompt photon contribution satisfactorily
explain the direct photon data above ∼ 1.5
GeV.

▶ However model calculations under-predict
the v2 data by a significant margin.
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▶ There is discrepancy for the v3 as well.
Together they are dubbed as “direct photon puzzle”.

R. Chatterjee et al.
Phys. Rev. C 88, 034901 (2013)

▶ Recent studies involving viscosities and modified photon production
rates have improved the prediction but the puzzle has not been
resolved fully.
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The photon flow observables have been found to be sensitive to :
▶ Initial-state geometry and fluctuations.
▶ Formation time.
▶ Dynamical and thermodynamic properties of the produced fireball.
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PD, Rupa Chatterjee, Dinesh K.
Srivastava,
Phys. Rev. C 95, 064907 (2017)

Anisotropic nuclear matter distribution of
238U can be probed with photon v2.

▶ For example, the body-body
configuration of U+U collision
@193A GeV can produce a
significantly large thermal photon v2,
comparable to the photon v2 from
mid-central Au+Au collisions.
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PD, Guo-Liang Ma, Rupa Chatterjee, et al.,
Eur. Phys. J. A 57 (4) 134 (2021)
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▶ Thermal photon spectra for different
configurations of collisions are almost
similar.

▶ Thermal photon v3 is significantly large
for θ = π/4 and θ = 0.

▶ On the other hand, the thermal photon
v2 is significantly large for θ = π/2.0 1 2 3 4 5 6
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▶ Inclusion of prompt contribution dilutes the photon v2 and
v3.

▶ The values are comparable to photon vn’s obtained in
0 − 20% Au+Au and Pb+Pb collisions at RHIC and LHC
energies respectively.
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PD, Guo-Liang Ma, Rupa Chatterjee, et al.,
Eur. Phys. J. A 57 (4) 134 (2021)
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▶ Both photon v2 and v3 are sensitive to the QGP phase.
Measurements of these observables thus can provide us insight
to understand the “direct photon puzzle”.
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CETHENP 2022 10 / 17

PD, Guo-Liang Ma, Rupa Chatterjee, et al.,
Eur. Phys. J. A 57 (4) 134 (2021)
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▶ The average angle is reduced significantly with increasing Npart .
▶ Due to the intrinsic triangular geometry of the clustered-carbon, ⟨ϵC3 ⟩

increases with Npart , whereas ⟨ϵC2 ⟩ decreases.
▶ The difference becomes substantial at larger Npart , which indicates an

obvious anti-correlation between ellipticity and triangularity in
α-clustered C + Au collisions.



Most-central collisions (≈0-1% centrality)
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▶ Both Glauber and TRENTO model predict ⟨ϵC3 ⟩ is almost twice as
large as ⟨ϵU3 ⟩, whereas, ⟨ϵC2 ⟩ is close to ⟨ϵU2 ⟩.

▶ The relative fluctuation of ϵC3 is found to be about 60% that of the
same for the unclustered case.

Glauber IC :
s(x, y, τ0) ∝ [νNcoll (x, y) + (1 − ν)Npart (x, y)]

TRENTO IC :

s(x, y, τ0) ∝
(

T
p
A
+ T

p
B

2

)1/p

PD, Rupa Chatterjee, Guo-Liang Ma, arXiv:2204.00235
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1⟨ dNγ

dypT dpT
(pT )⟩ and vγn {PP} are represented as dN

dypT dpT
(pT ) and vn respectively in the plots.
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▶ The thermal spectra are found to be close to each other. However,
we see a small difference at high pT due to initial hot-spots for the
clustered case.

▶ We find a significantly large thermal photon v3 for the clustered
C+Au collisions. However, the thermal photon v2 are found to be
close to each other.

Participant plane method (Lines):

vγn (pT ) =

∫ 2π
0 dϕ cos[ n(ϕ−ψPP

n )] dNγ

pT dpT dydϕ∫ 2π
0 dϕ dNγ

pT dpT dydϕ

vγn {PP}(pT ) = ⟨vγn (pT )⟩ =

∑Nevents
i=1

dNγ(i)

d2pT dy
v
γ(i)
n (pT )

∑Nevents
i=1

dNγ(i)

d2pT dy

Scalar product method (Symbols):

vγn {SP}(pT ) =

〈
dNγ

dypT dpT
(pT )vγn (pT )vchn cos(n(Ψγn (pT ) − Ψch

n ))
〉

〈
dNγ

dypT dpT
(pT )

〉
vchn {2}
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2

2⟨vn(pT )⟩/⟨vm(pT )⟩ is represented as vn/vm
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PD, Rupa Chatterjee, Guo-Liang Ma, arXiv:2204.00235

R. Chatterjee and P. Dasgupta,
Phys. Rev. C 104, 064907 (2021).

vn =
vthn × dNth

dNth + dNnon−th

⟨vn(pT )⟩
⟨vm(pT )⟩

=

∑Nevent
i=1 vth

(i)
n dNth(i)

∑Nevent
j=1 vth

(j)
m dNth(j)

▶ The ratio minimizes the
uncertainties arising due to the
non-thermal contributions.
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▶ A significant difference in the photon anisotropic flow ratio has been
observed between the two cases of most-central (i.e. events with
Npart > 80) C+Au collisions.

▶ We expect the ratio to be an important observable to distinguish
between the clustered and unclustered state of carbon nucleus.
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▶ This study reveals the effect of non-uniform nuclear density
distribution of α-clustered carbon on photon flow observables.
We see that the elliptic and triangular flow of photons are
significantly large depending on the orientation of collisions.

▶ Both thermal photon v2 and v3 are sensitive to the QGP
evolution history rather than the hadronic phase.

▶ An event-by-event study indicates that the v2/v3 ratio can
distinguish between the clustered and unclustered state of
carbon in most-central C+Au collisions.
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Ideal Hydrodynamics
The local state of any fluid cell is an equilibrium-state and thus net
entropy flux vanishes :

∂µS
µ = 0

To solve ϵ, P , and 3 components of the fluid velocity v⃗ [nB is
negligible in transparent region of collision].
Hydro framework: Boost invariant ideal hydrodynamic framework.
H. Holopainen, H. Niemi, and K. Eskola, Phys. Rev. C 83, 034901 (2011).

Equation of State: Lattice based equation of state.
M. Laine and Y. Schroeder, Phys. Rev. D 73, 085009 (2006).
Initial condition: We consider Glauber Model to find initial entropy
density profile in the transverse plane of a collision event:

s(x , y) = s0[νncoll(x , y) + (1 − ν)npart(x , y)]



Thermal photons
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QGP rates → P. Arnold et. al. JHEP 0112, 009 (2001).
(leading order contributions)

→ J.Ghiglieri et. al. JHEP 1305, 010 (2013).
(next-to-leading order contributions)

Hadronic rates → S. Turbide et. al. Phys. Rev. C 69 014903
(2004).

Thermal photons spectrum is calculated by integrating the emis-
sion rates over the space-time 4-volume as follows:

E
dNγ

d3p
=

∫
[ (...) exp(−p.u(x)/T(x)) ]d4x
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