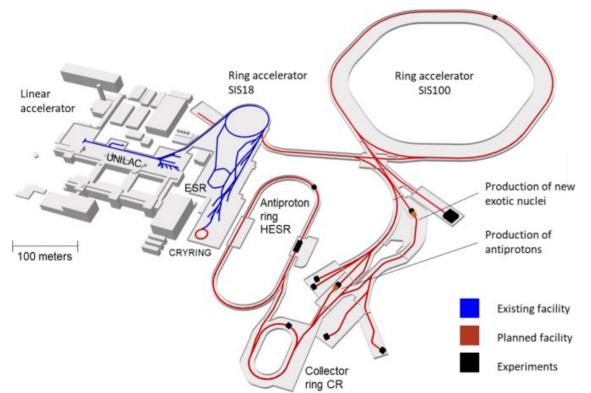
Dimuon measurement at CBM experiment

Sayak Chatterjee Bose Institute, Kolkata

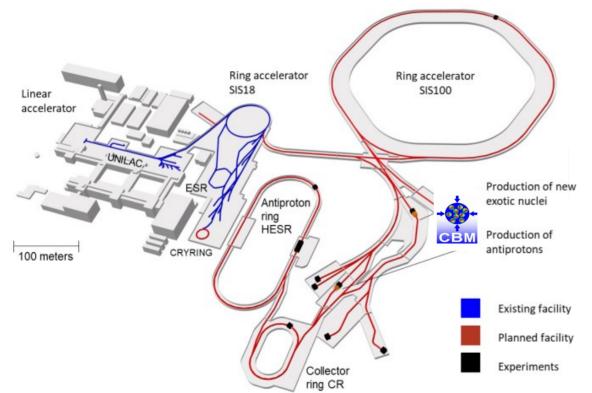


Contemporary and Emerging Topics in High Energy Nuclear Physics (CETHENP), 15th November 2022

Outline

- Introduction
 - Facility for Antiproton and Ion Research (FAIR)
 - Compressed Baryonic Matter (CBM) experiment
 - Muon Chamber (MuCh) detector
- Dimuon measurement at CBM
- Feasibility study of dimuon detection coming from
 - Freeze-out cocktail
 - Charmonium (J/ψ)
- Summary & outlook

Layout of the Facility for Antiproton and Ion Research (FAIR)


Unique features:

- Intense and high energy heavyion beams
- Flexibility and parallel operation
- Storage rings and beam cooling: Beam quality

Experimental pillars:

- APPA (Atomic, Plasma Physics and Applications)
- PANDA (antiProton ANnihilation at DArmstadt)
- **CBM (Compressed Baryonic** Matter)
- NuSTAR (Nuclear Structure, Astrophysics and Reactions)

Layout of the Facility for Antiproton and Ion Research (FAIR)


Unique features:

- Intense and high energy heavyion beams
- Flexibility and parallel operation
- Storage rings and beam cooling: Beam quality

Experimental pillars:

- APPA (Atomic, Plasma Physics and Applications)
- PANDA (antiProton ANnihilation at DArmstadt)
- **CBM (Compressed Baryonic** Matter)
- NuSTAR (Nuclear Structure, Astrophysics and Reactions)

Compressed Baryonic Matter (CBM) experiment

Physics Goals :

- QCD equation of states (EOS)
- Exotic phases and order of transitions
- Location of critical point
- Chiral phase transition
- Charm production and propagation close to and below the kinematic threshold

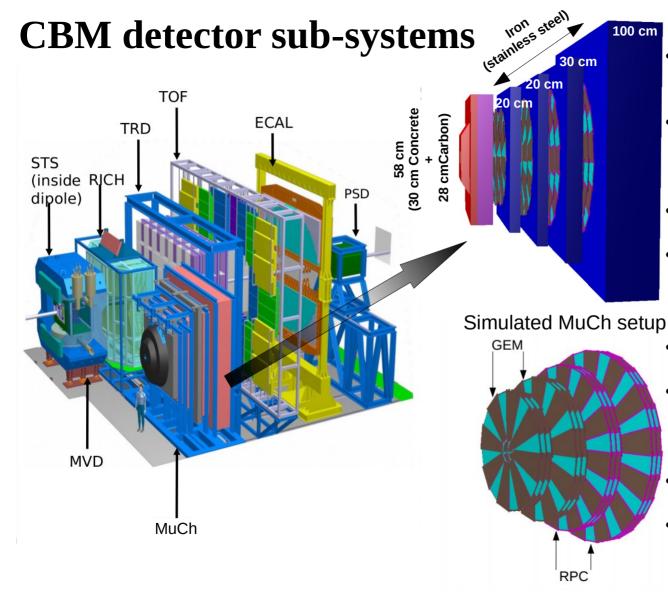
Challenges :

- Production cross sections are dramatically small
- Requires accelerators with unprecedentedly high beam intensities
- Detectors with good resolution and high rate capabilities

5

- On-line event selection
- •

Di-muon measurement at CBM-FAIR (SIS100): Uniqueness and Challenges Uniqueness:


- No di-muon data in heavy-ion sector between 2 40 A GeV
- No charm data below top SPS energies (158 A GeV)
- High precision measurements

Opportunities:

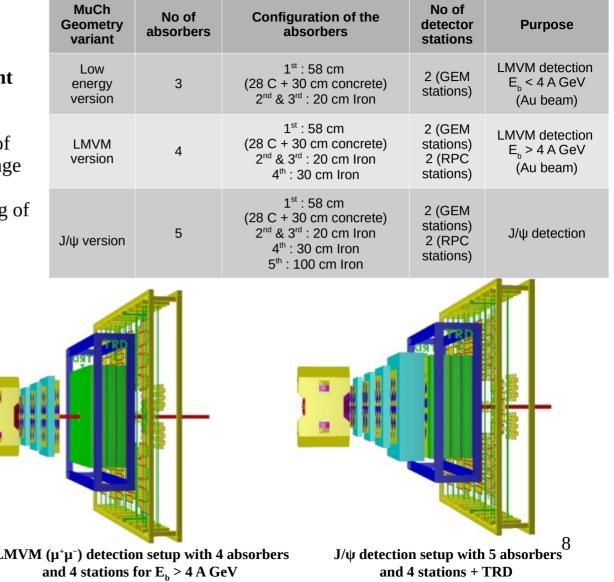
- Precision measurements of di-muon production in LMR and IMR
- Signal of first order phase transition (caloric curve)
- Detailed measurement of charm production and propagation in cold matter with beams of proton and light nuclei
- Possibility to investigate sub-threshold production of charm with heavy-ion (Au) beams

Challenges:

- Production cross sections/branching ratio are dramatically small
- Requires accelerators with unprecedentedly high beam intensities
- Detectors with high rate capabilities
- Large combinatorial background from weak decay of pions and kaons
- On-line event selection to reduce the raw data rate down to recordable

Muon Chamber (MuCh):

- MuCh Comprises of several detectors & segmented hadron absorbers
- Longitudinal segmentation of absorber & detectors are placed inside absorbers to facilitate tracking
- Angular coverage ~ 5° to 25°
- GEM will be used in the first two stations and RPC for the last two stations


Challenges:

- High interaction rate (up to 10 MHz)
- High particle flux at the detector stations (~ MHz/cm² in the 1st station for central collisions)
- Self triggered electronics
- Detectors with high resolution and good rate handling capabilities are required₇

MuCh at CBM

MuCh detector sub-system has three different geometry variants

- ✤ To detect the muon pairs coming from the decay of LMVM and J/ψ over the entire SIS100 energy range
- Modularised structure for hassle free comissioning of the detector sub-system

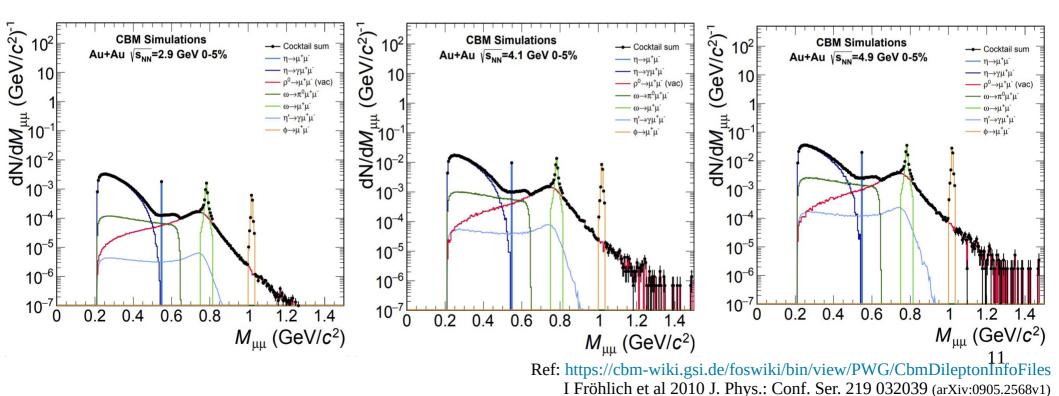
Low energy version with 3 absorbers and 2 stations ($E_{\rm b} \leq 4 \, \text{A GeV}$) for LMVM ($\mu^+\mu^-$) detection

LMVM ($\mu^+\mu^-$) detection setup with 4 absorbers

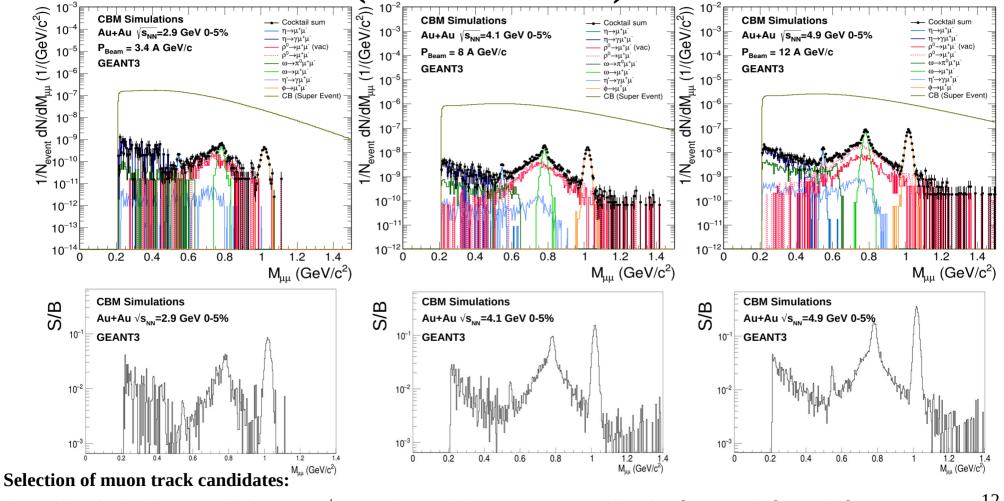
Simulation details

Event generators:

- UrQMD (for background):
 - Au+Au
 - Ni+Ni
 - p+Au
- PLUTO (for signal):
 - Freeze-out cocktail
 - $J/\psi \rightarrow \mu^+ + \mu^-$
- **Transport engine:** GEANT3
- Total number of events simulated: $\sim 10^6$
- Simulation framework: CbmRoot (APR20 release)
- Mode of simulation : Event by Event mode
- Multiplicities: Thermal FIST model (LMVM) (https://cbm-wiki.gsi.de/foswiki/bin/view/PWG/) UrQMD (J/ψ) (J. Steinheimer *et al.*, Phys. Rev. C 95, 014911, 2017)


SIS100 energy scan:

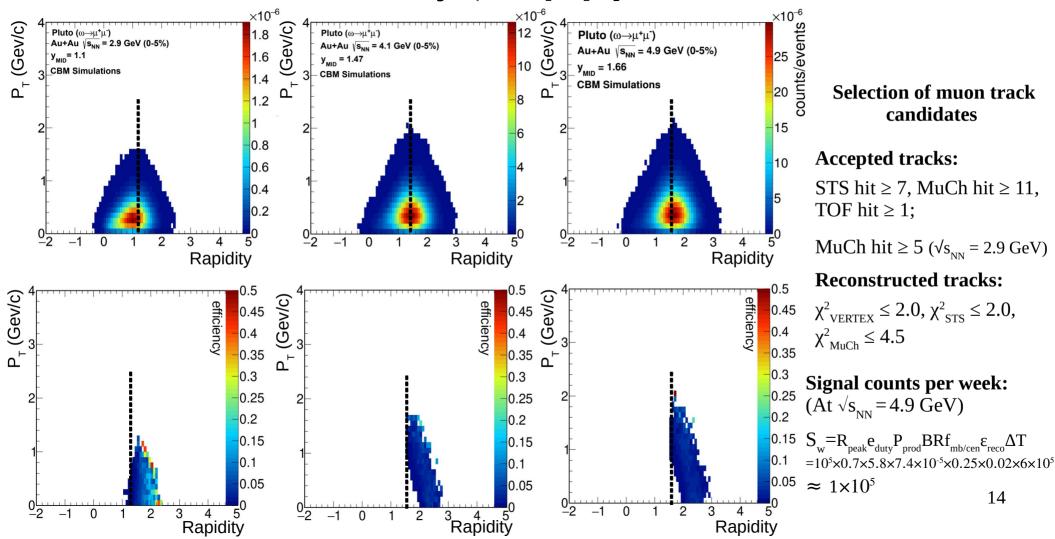
P _{beam} (A GeV/c)	E _{beam} (A GeV)	E _{kin} (A GeV)	√S _№ (GeV)	Description
3.3	3.43	2.49	2.86	lowest possible for heavy-ions at SIS100
4.4	4.5	3.56	3.19	HADES@SIS100 reference energy
7.95	8.0	7.06	4.09	intermediate energy of the scan
12.00	12.04	11.1	4.93	highest possible for heavy-ions at SIS100


Freeze-out cocktail

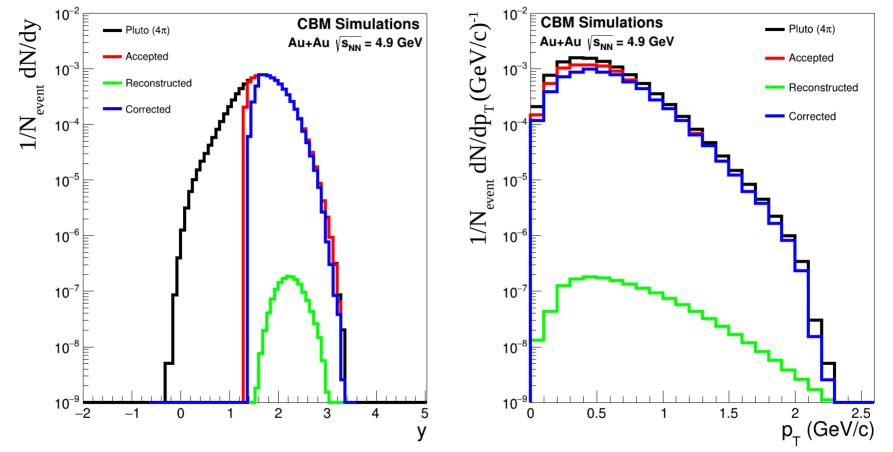
Freeze-out cocktail (Pluto)

- The input distribution of the signals are taken from Pluto based on thermal fireball model for Au+Au collisions
- → Thermal transverse distribution following $dN/dp_T \sim p_T m_T K_1(m_T/T)$
- ➤ Gaussian rapidity distribution

Freeze-out cocktail (Reconstructed)

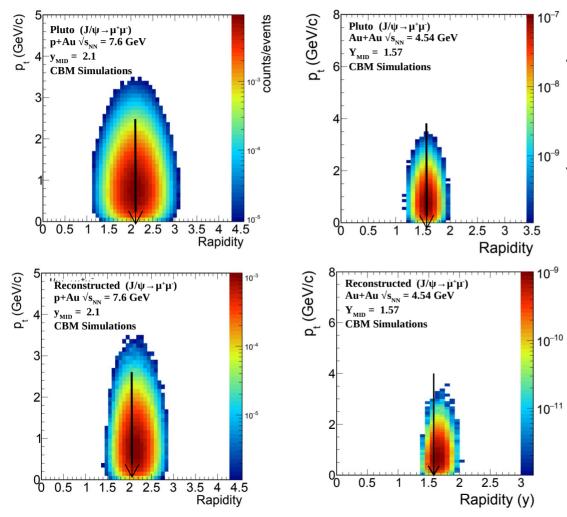


Accepted tracks: STS hit \geq 7, MuCh hit \geq 11, 5 ($\sqrt{s_{_{NN}}}$ = 2.9 GeV), TOF hit \geq 1; Reconstructed tracks: $\chi^2_{_{VERTEX}} \leq$ 2.0, $\chi^2_{_{STS}} \leq$ 2.0, $\chi^2_{_{MuCh}} \leq$ 4.5 Ref: S. Chatterjee QM2022 Poster (https://indico.cern.ch/event/895086/contributions/4707020/)


Phase space distribution ($\omega \rightarrow \mu^+ \mu^-$)

Reconstruction efficiency ($\omega \rightarrow \mu^+ \mu^-$)

Efficiency × Acceptance correction ($\omega \rightarrow \mu^+ \mu^-$)



After the correction, the corrected spectra matches well with the accepted spectra 15

Ref: S. Chatterjee QM2022 Poster (https://indico.cern.ch/event/895086/contributions/4707020/)

Charmonium (J/ψ)

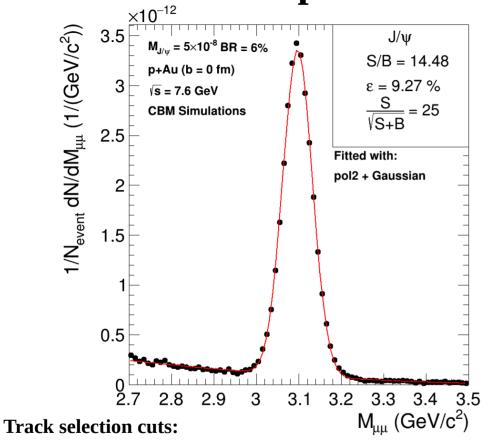
Phase space distribution $(J/\Psi \rightarrow \mu^+\mu^-)$

 Shift in pair rapidity distribution due to absorption of low momentum muons by the hadron absorbers

Good mid-rapidity coverage

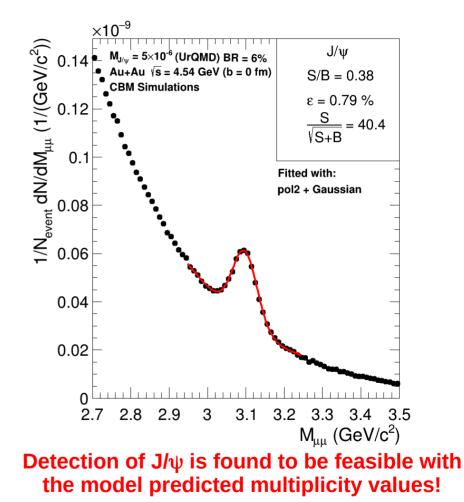
Track selection cuts:

Accepted tracks:

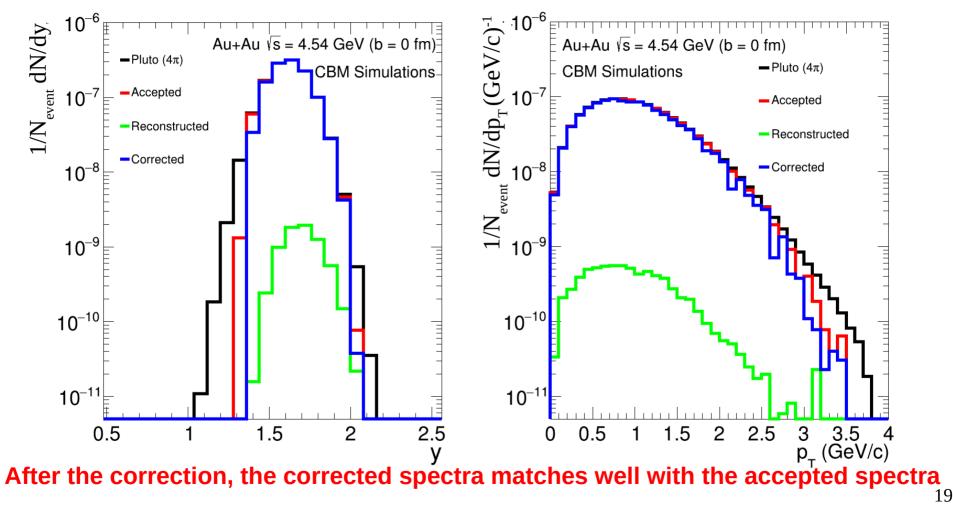

STS hit \geq 7; MuCh hit \geq 11; TRD hit \geq 3; TOF hit \geq 1;

Reconstructed tracks:

$$\chi^{2}_{\text{VERTEX}} \le 2.2; \ \chi^{2}_{\text{STS}} \le 3.4; \ \chi^{2}_{\text{MuCh}} \le 2.6; \ \chi^{2}_{\text{TRD}} \le 6.0 \ (\text{Au+Au})$$
$$\chi^{2}_{\text{VERTEX}} \le 3.0; \ \chi^{2}_{\text{STS}} \le 4.0; \ \chi^{2}_{\text{MuCh}} \le 2.5; \ \chi^{2}_{\text{TRD}} \le 6.0 \ (\text{p+Au})$$


17

Invariant mass spectra



Accepted tracks: STS hit \geq 7; MuCh hit \geq 11; TRD hit \geq 3; TOF hit \geq 1;

 $\begin{array}{l} \textbf{Reconstructed tracks:} \quad \chi^{2}_{_{VERTEX}} \leq 2.2; \; \chi^{2}_{_{STS}} \leq 3.4; \; \chi^{2}_{_{MuCh}} \leq 2.6; \; \chi^{2}_{_{TRD}} \leq 6.0 \; (Au+Au) \\ \qquad \chi^{2}_{_{VERTEX}} \leq 3.0; \; \chi^{2}_{_{STS}} \leq 4.0; \; \chi^{2}_{_{MuCh}} \leq 2.5; \; \chi^{2}_{_{TRD}} \leq 6.0 \; (p+Au) \end{array}$

Efficiency × Acceptance correction $(J/\psi \rightarrow \mu^+\mu^-)$

Ref: S. Chatterjee DAE-BRNS HEP symposium (https://www.niser.ac.in/daehep2020/talkposter/Sayak_Chatterjee_TLK_172_508.pdf)

Summary & Outlook

- ✓ The performance of LMVM detection at three different SIS-100 energies (√s_{NN} = 4.9, 4.1 & 2.9 GeV) are investigated with Au+Au collisions of 0-5% centrality
- The performance of J/ ψ detection at FAIR SIS-100 energies is investigated with realistic detector subsystem for Au+Au ($\sqrt{s_{_{NN}}} = 4.54 \text{ GeV}$) and p+Au ($\sqrt{s_{_{NN}}} = 7.6 \text{ GeV}$) collisions and with predicted charmonium yields, the measurement of J/ ψ is found to be feasible with MuCh subsystem
- The reconstructed spectra can be fitted with a symmetric Gaussian distribution with good mass resolution (~ 35 MeV), thanks to low material budget of STS
- Efficiency × acceptance correction is performed and the corrected spectra matches well with the input spectra
- Input signal from different event generators and comparison with the existing results
- Investigation of the different analysis techniques (e.g. Artifical Neural Network) to improve the signal to background ratios
- → Simulation of thermal di-muon excess and extraction of fireball temperature
- Time based simulation

Acknowledgement

Mr. Omveer Singh Ms. Ekata Nandy PWG-COM team PWD-DIL team

CBM-MuCh team Dr. Anna Senger Prof. Tetyana Galatyuk Dr. Ilya Selyuzhenkov Prof. Subhasis Chattopadhyay Dr. Partha Pratim Bhaduri Dr. Saikat Biswas

