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Introduction

Color String Percolation Model (CSPM)

Transport properties

= Shear viscosity to entropy density ratio (17/5)
= Bulk viscosity to entropy density ratio ({/s)
= Jet quenching parameter (q)

* Charm quark diffusion coetfficient (Dy)

Summary
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Color String Percolation Model (CSPM)

 What is color string percolation?

* Color strings are stretched between the partons of the target and the projectile

 Number of color string grows with increase in energy and with increase in number of colliding partons
e String density increases

e After a critical percolation density, a macroscopic cluster appears, which marks the percolation phase

transition
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Color String Percolation Model (CSPM)

* Inthe thermodynamic limit, the color Suppression Factor can be
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* Now the fitting function becomes,
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Color String Percolation Model (CSPM)

The initial percolation temperature is related to the color suppression factor by the relation, 7' =

(pT)1
2F (&)

We observe that after (dN.,/dn) ~ 10, the temperature is higher than the hadronization temperature

regardless of the collision systems
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Shear Viscosity to entropy density ratio

From the relativistic kinetic theory, the shear viscosity to entropy
density ratio is given by, 7 _ TA

S 5
Using the value of mean free path, we get the final expression of shear
viscosity to entropy density ratio as,

n TL

- N

s  5(1—e9)

For the matter formed in ultra-relativistic collisions at LHC energies, the
value of /s is the lowest as compared to any other known material

We observe that /s approaches the KSS bound value and becomes
Wen 10 — 20

minimum at

This hints that the matter behaves almost like a perfect fluid
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Bulk Viscosity to entropy density ratio ({/s)

2
* From the relaxation time approximation (RTA), the bulk viscosity of a system is given as, { = 157 % — cg)

2
1
* So, the bulk viscosity to entropy density ratio becomes, (/s = 152 (§ - cg)

o After (dNo/dn) > 10 — 20, the value of (/s becomes minimum and approaches zero
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Jet transport coefficient (g)

* Jets are collimated beams of multitude of hadrons originating from the /
hard partonic scattering I

* They lose their energy through medium-induced gluon radiation and /,:\ '

collisional energy loss, because of which we observe suppression of high /

transverse momentum particles (jet quenching)

d
* In kinetic theory framework, g can be estimated by the formula, ¢ = p/ d’q, q° °

L g, , Where p is the

number density of the medium and da/dqu_ is the differential scattering cross-section of the particles in
the medium n 3 T3
r s 2 q

* The jet transport parameter and the shear viscosity to entropy density ratio are related as

313 15 T2(1 —e™%)
277/3 L

q~
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Jet transport coefficient (g)
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* At lower multiplicity the system is not dense enough to highly quench the partonic jets, whereas with increase
in multiplicity the quenching of jets becomes more prominent

* Inthe low energy density regime, the system behaves almost like a massless hot pion gas

* As initial energy density increases, g values deviate from the ideal QGP values because systems produced in

high multiplicity events are viscous and are not exactly ideal
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Jet transport coetticient (q)
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e §/T3 as a function of scaled charged particle multiplicity shows a sudden increase and reaches to a
Ncp

maximum at 1/S, < 2, then it starts decreasing regardless of the collision system

* The §/T?3 obtained from CSPM approach as a function of temperature has similar kind of behavior as
observed by the JET collaboration
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Dittusion of charm quark

* Heavy quarks are produced early in the evolution of the system, hence are better probes

* They interact with the medium and their momentum spectra gets modified

* Interaction of charm quark with the lighter quarks and
Up Quark Charm Quark Top Quark

~0.002 GeV 1.25 GeV 175 GeV

gluons will lead to Brownian motion, which can be

explained by Fokker-Planck transport equation . ? ‘

* The information about the interaction of heavy quarks Do QAR Strange Quark Bottom Quark
~ 0.005 GeV ~0.095 GeV 4.2 GeV

within the QGP medium is embedded within the drag
and diffusion coefficients
of(t,p) 0

= 8—M{Ai(p)f(t,p) + %[Bijf(t,p)]}
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Dittusion of charm quark

Relaxation time of a quark is defined as the time accounting for the

exponential decay of its average transverse momentum

For a lighter quark, the relaxation time is given by, T =~ 5"T/S
. _ | TL
In CSPM formalism, s = 5(-e )

For heavier quarks (charm and bottom quarks), the particle

mTt

dependent relaxation time is expressed as, Tp = -

Relaxation time of charm quark is higher in smaller system because

of less dense medium

L : I 1
Drag coefficient is the inverse of the relaxation time, y = —
R
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Dittusion of charm quark

From Einstein’s relation, the drag and transverse momentum diffusion
coefficient are related as, By = yT(m, + T)

Where, m, = 1.275 GeV is the mass of charm quark

The spatial diffusion coefficient (Dg) can be estimated by starting a

particle at position and time x = 0 and t = 0 and finding the mean

squared position at a later time, <(x(t) — x(O))2> = 2Dt

In static limit, the spatial diffusion coefficient is given by the

T

mcey

expression, Dy =

ADS/CFT calculation gives a minimum for this parameter ~ 1
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* QGP is closest to a perfect fluid found in nature

d

* Observed a threshold of charged particle multiplicity, ( Ngh) < 10 — 20 after which we see a change

d
in the dynamics of the systems

* Possibility of observing jet quenching in high multiplicity pp collisions

e Studied diffusion of charm quark in the deconfined medium within CSPM

* Hints of possible formation of QGP droplets in high multiplicity pp collisions
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